Control of the Regioselectivity of Oxidative Free-Radical Cyclizations by Addition to Haloalkenes

Barry B. Snider,* Qingwei Zhang, and Mark A. Dombroski
Department of Chemistry, Brandeis University, Waltham, Massachusetts 02254-9110

Received February 27, 1992

Abstract

Chlorine substituents on the alkene control the regioselectivity of the cyclization of 5 -hexenyl or 6 -heptenyl radicals generated by oxidation of an acetoacetate ester or 1,3 -diketone with $\mathrm{Mn}\left(\mathrm{OAc}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right.$. 6 -Exo-cyclization of the radicals obtained by oxidation of benzoylacetone derivatives 10 and 13 , containing a chlorine on the terminal double bond carbon, gives α-chloroalkyl radicals that add to the aromatic ring to give 11 and 16 , respectively. Loss of HCl leads to naphthols 8 and 17 indicating that this reaction may be useful for aureolic acid synthesis. Exo-cyclization is the exclusive process with acetoacetates $28 \mathrm{~b}, 44,55 \mathrm{~b}$, and 59 containing a chlorine on the terminal double bond carbon. 6-Endo-cyclization is the exclusive process with acetoacetates 18 c and 51 b containing a chlorine on the internal double bond carbon. Intra- and intermolecular competition experiments indicate that these effects are primarily steric. The chlorine substituent controls the regioselectivity of the cyclization by sterically hindering attack of the radical on the chlorine bearing double bond carbon thereby retarding formation of the β-chloroalkyl radical. The chlorine substituent does not electronically accelerate attack on the other end of the double bond to give the α-chloroalkyl radical.

Introduction

Free-radical cyclizations have become a valuable and general method for the synthesis of cyclopentanes and cyclohexanes. ${ }^{1}$ Most 5-hexenyl and 6 -heptenyl radicals undergo regioselective exo-cyclizations to give cyclopentanemethyl and cyclohexanemethyl radicals, respectively. However, 5 -hexenyl and 6 -heptenyl α-keto radicals, in which the carbonyl is in the ring being formed, cyclize preferentially endo to give cyclohexyl and cycloheptyl radicals, respectively. ${ }^{2}$ Alkyl substituents on the double bond influence the regioselectivity of the cyclization. Alkyl and aryl substituents on the terminal end of the double bond accelerate exo-cyclization and retard endo-substitution, while substituents on the internal end of the double bond accelerate endo-cyclization and retard exo-cyclization. Unfortunately, alkyl and aryl substituents usually cannot be used to control the regioselectivity of radical cyclization, since they cannot be removed easily after the cyclization has been carried out. We thought that chlorine substituents on the double bond might control the regioselectivity of the cyclization without modification of the carbon skeleton. Furthermore, the chlorine would also introduce additional functionality into the product.
We have recently developed an efficient oxidative free-radical cyclization using $\mathrm{Mn}(\mathrm{OAc})_{3}{ }^{2}$ to oxidize an unsaturated β-keto ester, 1,3 -diketone, or 1,3 -diester to an α-keto radical that cyclizes. ${ }^{3}$ The reaction is terminated

[^0]by oxidation of the cyclic radical with $\mathrm{Cu}(\mathrm{OAc})_{2}$ or Mn (OAc$)_{3}$. Mono, tandem and triple cyclizations can be carried out in high yield. Since these reactions are initiated by oxidation of a 1,3 -dicarbonyl compound rather than by halogen atom abstraction, ${ }^{4}$ they should be readily compatible with the use of chloro- or bromoalkenes as substrates.

Several years ago, we reported that oxidation of la with $\mathrm{Mn}(\mathrm{OAc})_{3}-2 \mathrm{H}_{2} \mathrm{O}$ in acetic acid at rt gives $3 \mathrm{a}(58 \%)$ as the sole isolable product. ${ }^{36}$ Enolization of 1a, oxidation to the α-keto radical, and exo-cyclization give monocyclic radical 2a. Cyclization of the monocyclic radical 2a to the aro-

matic ring gives 3 a after oxidation and tautomerization. This oxidative cyclization forms two rings and leads to a highly functionalized product. This reaction might be useful for the synthesis of anthracycline and aureolic acid antibiotics if the reaction can be carried out without the ethyl substituent on the side chain to provide products such as 8 and 17. To our disappointment, but as expected, no tricyclic products can be obtained from either the terminal alkene 1b or the terminal alkyne 4a. We believe
(3) For previous papers in this series see: (a) Snider, B. B.; Mohan, R. M.; Kates, S. A. J. Org. Chem. 1985, 50, 3659 . (b) Snider, B. B.; Mohan, R. M.; Kates, S. A. Tetrahedron Lett. 1987, 28, 841. (c) Mohan, R.; Kates, S. A.; Dombroski, M.; Snider, B. B. Ibid. 1987, 28, 845. (d) Snider, B. B.; Patricia, J. J.; Kates, S. A. J. Org. Chem. 1988, 53, 2137. (e) Snider, B. B.; Dombroski, M. A. J. Org. Chem. 1987, 52, 5487. (f) Snider, B. B.; Patricia, J. J. J. Org. Chem. 1989, 54, 38. (g) Merritt, J. E.; Sasson, M.; Kates, S. A.; Snider, B. B. Tetrahedron Lett., 1988, 29, 5209. (h) Kates, S. A.; Dombroski, M. A.; Snider, B. B. J. Org. Chem. 1990, 55, 2427. (i) Dombroski, M. A.; Kates, S. A.; Snider, B. B. J. Am. Chem. Soc. 1990, 112, 2759. (j) Snider, B. B.; Merritt, J. E.; Dombroski, M. A.; Buckman, B. O. J. Org. Chem. 1991, 56, 5544. (k) Snider, B. B.; Merritt, J. E. Tetrahedron 1991, 47, 8663. (1) Curran, D. P.; Morgan, T. M. Schwartz, C. E.; Snider, B. B.; Dombroski, M. A. J. Am. Chem. Soc. 1991, 113, 6607. (m) Dombroski, M. A.; Snider, B. B. Tetrahedron 1992, 48, 1417.
(4) Curran, D. P.; Jasperse, C. P.; Totleben, M. J. J. Org. Chem. 1991, 56, 7169.
that these substrates undergo 7 -endo-cyclizations to give products that are oxidized further. ${ }^{3 k}$ We therefore turned our attention to substrates with removable substituents on the terminal end of the double bond, which should favor 6-exo-cyclization.

Results and Discussion

Preparation of Dicarbonyl Compounds. The substrates were prepared in one step by standard dianion alkylations. Alkylation of the dianion of the appropriate dicarbonyl compound with 5-bromo-2-pentyne, ${ }^{5 \mathrm{a}} 4$ -bromo-1-(trimethylsilyl)-1-butyne, ${ }^{5 \mathrm{~b}}$ 4-bromo-1-chloro-1butene ${ }^{6}$ (2:1 $E-Z$ mixture), crotyl bromide, 1,2-dichloropropene, or 1,3 -dichloropropene affords $4 \mathrm{~b}(60 \%)$, 4c (48%), 10 (57%), 13 (68%), 28a (45%), 44 (40%), 51b (35%), 55b (40%), and 59 (41%). 2,4-Dimethoxybenzoyl acetone (12) ${ }^{7}$ was prepared by acylation of the enolate of acetone ${ }^{8}$ with 2,4-dimethoxybenzoyl chloride in 75% yield. Allylation of methyl 7-chloro-3-oxo-6-heptenoate ${ }^{3 f}$ affords 50% of 28 b .
Synthesis of Dihydroanthracenes 8 and 17. We investigated the cyclizations of acetylenic radicals initially since these reactions will lead directly to products at the phenol oxidation state, i.e., 8. Since the reaction fails with the terminal alkyne 4a we examined the readily available methyl-substituted alkyne 4b to demonstrate that acetylenic radicals do undergo this tandem cyclization. Oxidative cyclization of $4 b$ with 4.4 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in AcOH for 17 h at $35^{\circ} \mathrm{C}$ affords 81% of 7. Oxidation

and 6-exo-cyclization form the expected radical $\mathbf{5 b}$, which cyclizes to give phenol $\mathbf{6 b}$ after oxidation and tautomerization. Further oxidation of phenol 6 b by $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ affords the quinone methide, which reacts with acetic acid to give acetoxy phenol 7. ${ }^{9}$ Oxidation of phenol 6 b is faster than oxidative cyclization of $\mathbf{4 b}$, since only recovered 4 b and 7 are isolated when only 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ are used. The isolation of $\mathbf{7}$ in high yield indicates that

[^1]terminally substituted acetylenic radicals undergo facile 6 -exo-cyclization. Unfortunately, the phenol 6 produced in this reaction is oxidized more rapidly than diketone $\mathbf{4 b}$, so this reaction will not be useful for the preparation of p-methylphenols.

We turned our attention to oxidative cyclization of silylalkyne 4 c since the anticipated product, phenol 6 c , cannot be oxidized to a quinone methide and protodesilylation of 6 c should give the desired phenol 8 . We were disappointed to find that reaction of 4 c with 4.5 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in AcOH for 17 h at $35^{\circ} \mathrm{C}$ provides 71% of binaphthol 9. Presumably, oxidation and tandem cyclization proceed as expected to provide (trimethylsilyl)naphthol 6c. Protodesilylation of 6c gives naphthol 8 , which is oxidized to form binaphthol 9 . There is ample precedent for the oxidative dimerization of naphthols by $\mathrm{Mn}(\mathrm{acac})_{3}{ }^{10 \mathrm{a}}$ and other oxidants. ${ }^{10 \mathrm{~b}}$

Since the protodesilylation of $\mathbf{6 c}$ is acid catalyzed we examined buffered reaction mirtures and less acidic solvents for the oxidative cyclization. Reaction of 4 c with 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in AcOH containing KOAc as a buffer leads to a 7:1:2 mixture of recovered $4 \mathrm{c}, 8$, and 9 , confirming that 8 is an intermediate in the formation of 9 . The absence of $\mathbf{6 c}$ indicates that protodesilylation is rapid even in the buffered solution. The formation of a 1:2 mixture of 8 and 9 at low conversion demonstrates that oxidation of 8 is faster than oxidation of 4 c . Oxidation of 4 c in $\mathrm{EtOH}^{3 \mathrm{j}}$ gives a complex mixture. The oxidative cyclization of silylalkyne 4 c does not provide a route to 8; this procedure should be useful for the synthesis of the natural product setomimycin, which has the cyclic framework of $9 .{ }^{11}$

Since we could not produce naphthols 6 or 8 from alkynes we turned our attention to chloroalkenes. We were delighted to find that oxidative cyclization of 10 with 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in AcOH for 15 h at $35^{\circ} \mathrm{C}$ gives 79% of naphthol 8^{12} and a trace of binaphthol 9 . The chlorine substituent directs the initial cyclization 6-exo. Benzylic chloride 11 is obtained after the second cyclization and oxidation; loss of HCl from 11 leads to naphthol 8.

The isolation of 8 in high yield from the oxidative cyclization of 10 , but not from 4 c , is puzzling. Oxidation of naphthol 8 with 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in AcOH for 24 h at $35^{\circ} \mathrm{C}$ gives 86% of binaphthol 9 confirming the proposed pathway for the formation of 9 from 4c. Protodesilylation of 6 c must be much faster than oxidation of diketone 4 c since phenol 8 derived from protodesilylation of 6 c is oxidized to 9 . Conversely, loss of HCl from 11 must be slower than oxidation of diketone 10 since phenol 8 derived from loss of HCl from 11 is not oxidized to 9.

Having established that oxidative cyclization of 10 provides phenol 8 in high yield, we considered the suitability of this reaction for the synthesis of olivin, the aglycon of aureolic acid antitumor antibiotic olivomycin. ${ }^{13}$ Olivin

[^2]has the ring system of 8 with two hydroxy groups on the left-hand ring and additional functionality on the cyclohexanone ring. Dimethoxynaphthol 17 was chosen as the target for initial model studies since it has the oxygen functionality present in the left hand ring of olivomycin. We were concerned that the electron-rich naphthol 17 might be even more susceptible to oxidative dimerization than 8.

We were disappointed to find that oxidative cyclization of 13 with 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in AcOH for 8 h at $35^{\circ} \mathrm{C}$ gives 20% of recovered 13 , only 12% of the desired naphthol $17,19 \%$ of dichloride 15 , and 19% of dihydronaphthol 16. Oxidative cyclization of 13 gives the expected dihydronaphthol 16 that slowly loses HCl to give naphthol 17. The chloride ion liberated in the elimination that forms 17 reacts with α-chloroalkyl radical 14 to give dichloride $15 .{ }^{14}$
It is not clear why the analogous dichloride is not formed in the oxidation of 10 . The most likely explanation is that the two methoxy groups slow down the cyclization of 14 to give 16 so that formation of the dichloride occurs at a competitive rate. Formation of 15 becomes the major process in the presence of excess chloride ion. Oxidation of 13 with 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and 4 equiv of LiCl^{14} in AcOH for 17 h at rt provides 68% of 15 . The dichloride 15 cannot be hydrolyzed to the aldehyde with AgNO_{3} in aqueous dioxane at $50^{\circ} \mathrm{C}$. ${ }^{15}$

The pH of the solution affects the ratio of products in the oxidative cyclization. Oxidation of 13 with $\mathrm{Mn}(\mathrm{O}-$ $\mathrm{Ac})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in $1: 1 \mathrm{AcOH}-\mathrm{TFA}$ for 13 h at rt affords 30% of 17 , and only 5% of 15 and 5% of 16 . On the other hand, a similar reaction in KOAc-AcOH provides 31% of 16 and only 5% of 17 and 5% of 15 . The elimination of HCl from 16 in AcOH is probably acid catalyzed since 17 is the major product in AcOH-TFA and 16 is the major product in $\mathrm{KOAc}-\mathrm{AcOH}$. Elimination of HCl from 16 can also be accomplished in high yield by treatment with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH . The most efficient procedure for the preparation of naphthol 17 involves oxidative cyclization of 13 in $\mathrm{KOAc}-\mathrm{AcOH}$ and treatment of the crude product with

[^3]$\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH to convert 16 to 17. This two-step procedure affords 43% of 17 from 13 suggesting that oxidative cyclization of chloroalkenes may be a viable route to aureolic acid aglycones.

Oxidative Cyclization of α-Allyl Acetoacetates 28 and 44. Oxidative cyclization of 18 a with 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and 1 equiv of $\mathrm{Cu}(\mathrm{OAc}) \cdot \mathrm{H}_{2} \mathrm{O}$ gives 20 a in 86% isolated yield. ${ }^{3 i}$ Oxidation of 18 a by Mn (III) affords the α-keto radical, which cyclizes to the 1,1-disubstituted double bond exclusively 6 -endo to give 19a. On the other

hand, oxidative cyclization of $\mathbf{1 8 b}$ gives a complex mixture containing 20b (55%), 21b (5%), 23 (6%), 24 (15%), 25 (6\%), 26 (1%), and 27 (12%). ${ }^{\text {3j }}$ The α-keto radical cyclizes to the monosubstituted double bond to give a 1.7:1 mixture of cyclohexyl radical 19 b and cyclopentylmethyl radicals 22. The cyclohexyl radical $19 b$ cyclizes to give $20 b$ after Cu (II) oxidation. 5-exo-Cyclization of the α-keto radical gives mainly 22α that does not cyclize to give the strained trans-fused bicyclo[3.3.0] octane. 6-Endo-cyclization of 22α gives 25 ; oxidation of 22α by Cu (II) gives 24,26 , and 27. The cyclization can be directed exclusively 6 -endo by placement of a chlorine on the internal carbon. Oxidative cyclization of 18 c forms exclusively 20 c in 72% yield. ${ }^{3 i}$

The cyclization can be directed exclusively 5 -exo by placement of a chlorine or methyl group on the terminal carbon of the double bond. Oxidative cyclization of 28a gives 41% of vinylcyclopentane 34 and 6% of a $3: 3: 2$ mixture of 30a, 35a, and 32a. 5-exo-Cyclization to give $31 \alpha a$ is the predominant reaction of the α-keto radical generated by oxidation of $28 a$. Only 2% of 30 a resulting from 6-endo-cyclization is obtained. Oxidation of radical $31 \alpha a$ by $\mathrm{Cu}(\mathrm{II})$ to give diene 34 is the major pathway since $5-$ exo-cyclization of $31 \alpha a$ would give a highly strained trans-fused bicyclo[3.3.0]octane. ${ }^{16}$ 6-Endo-cyclization of 31α a to give a secondary cyclohexyl radical that is oxidized by Cu (II) to 32 a is a minor pathway. The minor radicals 31β a and 29 a undergo the expected cyclizations to give 35a and 30a, respectively.

The monocyclic secondary radical $31 \alpha a$ reacts very differently than the analogous monocyclic primary radical 22α obtained from 18 b . Oxidation of primary radical 22α
(16) (a) Beckwith, A. L. J.; Phillipou, G.; Serelis, A. K. Tetrahedron Lett. 1981, 22, 2811. (b) Beckwith, A. L. J.; Roberts, D. H.; Schiesser, C. H.; Wallner, A. Tetrahedron Lett. 1985, 26, 3349.

by $\mathrm{Cu}(\mathrm{II})$ gives mainly lactone 27 and alcohol 24 a in a process that involves the ester group; diene 26 is a minor product. ${ }^{3 j}$ On the other hand, oxidation of secondary radical $31 \alpha a$ by $\mathrm{Cu}(\mathrm{II})$ gives only diene 34 ; none of the ethylidenecyclopentane is formed.
The monocyclic α-chloroalkyl radical 31 $\alpha \mathbf{b}$ reacts very differently than the monocyclic secondary radical $31 \alpha a$. Oxidative cyclization of chloroalkene 28b gives 53% of a 1:1 inseparable mixture of hydrindanes 32 b and $33 \mathrm{~b}, 2 \%$ of a 4.4:2.5:1 mixture of a stereoisomer of 33 b and two stereoisomers of $\mathbf{3 5 b}$, and 3% of a ca. 1:1:1 mixture of two stereoisomers of 32b and bicyclo[3.3.0]octane 35b. The α-keto radical obtained from oxidation of 28 b undergoes exclusively 5 -exo-cyclization and gives mainly $31 \alpha b$ with the radical and the propenyl substituent trans to each other. Radical 31 α b cyclizes predominantly 6-endo to give a cyclohexyl radical that is oxidized by Cu (II) to give 32b and 33 b , since 5 -exo-cyclization would lead to a trans-fused bicyclo[3.3.0]octane ${ }^{16}$ and Cu (II) does not oxidize the α chloroalkyl radical. ${ }^{17}$ The chlorine is equatorial in 32b and 33b to avoid a 1,3-diaxial interaction with the ester group. Hydrogenation of the mixture of 32 b and 33 b over Rh / C affords an $8: 1$ mixture of $\mathbf{3 6 b}$ and the deschloro compound establishing that the alkenes are double bond position isomers.

The substituents on the radical centers of $22 \alpha, 31 \alpha a$, and $31 \alpha b$ have a remarkable effect on the reactivity of the radical. Primary radical 22α is oxidized by Cu (II) mainly to lactone 27 and alcohol 24 while secondary radical $31 \alpha a$ is oxidized by $\mathrm{Cu}(\mathrm{II})$ to alkene 34. Chloroalkyl radical $31 \mathrm{\beta b}$ is too electron deficient to be oxidized rapidly by $\mathrm{Cu}(\mathrm{II}) .{ }^{17}$ Instead, it undergoes a 6 -endo-cyclizaton to give 32b and 33b since strain prevents a 5 -exo cyclization. ${ }^{16}$

Oxidative Cyclization of α-Allyl Acetoacetate 44. A chlorine substituent can also be used to direct the cyclizations of 6 -heptenyl radicals to give exclusively 6 -exo products. Oxidative cyclization of 1,1-disubstituted alkene 37a affords 68% of 38 a from initial 7 -endo-cyclization as the only product. ${ }^{3 k}$ Oxidative cyclization of the terminal alkene 37b affords 32% of 38 b from 7 -endo-cyclization and 12% of a $2: 1$ mixture of $39 b$ and $40 b$ from 6-exocyclization. ${ }^{3 k}$ The cyclization can be directed exclusively

[^4]6-exo by a terminal alkyl substituent. ${ }^{3 i}$ Oxidative cyclization of $41 Z$ affords 67% of a $25: 1$ mixture of 42 and 43 while $41 E$ gives 46% of a $2: 1$ mixture of 42 and 43 .

All the products obtained from chloroalkene 44 are formed from 6 -exo-cyclization of the α-keto radical. Oxidative cyclization of 44 gives 66% of a $2: 4: 1: 1$ mixture of $46,48,49$, and 50 . The radical obtained from $44 E$ should cyclize to a $2: 1$ mixture of α-chloroalkyl radicals 47 and 45 since the cyclization of $41 E$ gives a $2: 1$ mixture of 42 and $43 .{ }^{3 i, 1}$ The radical obtained from $44 Z$ should give mainly 47, although the selectivity should not be as high as the $25: 1$ ratio observed with $41 Z^{3 i, 1}$ since chlorine is smaller than an ethyl group. The observed 3:1 ratio of adducts (48-50): 46 derived from 47 and 45 , respectively, is identical to that predicted for the $2: 1 E / Z$ mixture of 44.

The chlorine substituent also perturbs the regioselectivity of the cyclization of α-chloroalkyl radical 47. $\alpha-$ Chloroalkyl radical 45 cyclizes 5 -exo, as expected, to give indanone 46 whose spectral data are analogous to those of 43 . To our surprise, α-chloroalkyl radical 47 cyclizes

both 5 -exo to give indanone 48, whose spectral data are analogous to those of 42 and 6 -endo to give octalones 49 and 50 , whose spectral data are similar to those of 33 b and 32b. On the basis of the yield data given above, 5 -exocyclization of α-chloroalkyl radical 47 to give 48 is only twice as fast as 6-endo cyclization to give 49 and 50 while the analogous methyl substituted radical cyclizes exclusively 5 -exo to give 42.

Oxidative Cyclization of α-Benzyl Acetoacetates 51b, 55b, and 59. Oxidative free-radical cyclization of β-keto ester 51a gives 50% of a $9: 3: 1$ of 6 -endo-cyclization product 52a and 5-exo-cyclization products 53a and 54a. ${ }^{3 \mathrm{C}}$ From this data, 6 -endo-cyclization of the α-keto radical to
the terminal double bond is calculated to be 2.25 times faster than 5-exo cyclization.

The α-keto radical obtained from 51b, with a chlorine substituent on the internal carbon of the double bond, undergoes exclusively 6 -endo-cyclization. Oxidative cyclization of β-keto ester 51 b with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ gives 64% of tricyclic chloride 52 b as the only isolable product.
The α-keto radicals obtained from 55a or 55b, with a methyl group or chlorine on the terminal carbon of the double bond, undergo exclusively 5 -exo-cyclization. Oxidative cyclization of (\boldsymbol{E}) -55 a with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ gives 9% of $56 a, 47 \%$ of 57 a, and 16% of 58 a. ${ }^{31}$ Oxidative cyclization of 55 b gives 66% of a $5: 1$ mixture of trans-fused hydrindane 57 b and one of the diastereomers of cis-fused hydrindane 58 b , and 6% of the other diastereomer of 58 b . Hydrogenolysis of the 5:1 mixture over Pd/C gives a 5:1 mixture of 53a and 54a. Hydrogenolysis of the pure diastereomer of 58 b gives 54 a .
A chlorine substituent can also be used to direct the 6 -exo-cyclization of 6 -heptenyl α-keto radicals leading to anthracene derivatives. Oxidative cyclization of 59 for 28 h at $35^{\circ} \mathrm{C}$ affords only traces of the expected products 60-63. The major products are obtained from 60-63 by solvolysis to give acetate 64 (54%) and by elimination to give alkene 65 (15%). MM2 calculations suggest that solvolysis of the expected major product 60 should be much more facile than solvolysis of 57a. The trans-fused cyclopentane of 57 a is calculated to increase the steric energy of the sp^{2}-hybridized benzylic cation obtained from 57a, making ΔH for solvolysis of chloroindane $57 \mathrm{a} 2.4 \mathrm{kcal} / \mathrm{mol}$ more endothermic than solvolysis of chlorodecalin $60 .{ }^{18}$
We carried out the oxidative cyclization for a shorter time at a lower temperature in an attempt to isolate 60-63. Oxidative cyclization of 59 for 17 h at $25^{\circ} \mathrm{C}$ provides 16% of $\mathbf{6 0 , 1 \%}$ of $61,4 \%$ of $\mathbf{6 2 , 6 \%}$ of $\mathbf{6 3}, 32 \%$ of 64 , and 10% of 65 . As discussed above for the cyclization of 44 , the $2: 1$ E / Z mixture of 49 should give a $3: 1$ mixture of trans- and cis-fused isomers 60-63. The formation of significant amounts of alkene 65 and the possibility that 64 is formed by addition of acetic acid to 65 makes analysis of the stereoselectivity of the cyclization impossible.
Structure and Stereochemistry of the Cyclization Products. The gross structures of the products were established by analysis of the olefinic region in the ${ }^{1} \mathrm{H}$ NMR spectra. The ketone carbonyl stretch was used to establish the presence of a cyclopentanone or a cyclo-

[^5]hexanone. The stereochemical assignments are based largely on analysis of the coupling constants. For instance, large vicinal coupling constants between the methine hydrogens indicate that the chloride is equatorial in 16 and that the benzoyl and dichloromethyl groups are equatorial in 15.
The stereochemistry of 34 was assigned based on the absorption of the methine hydrogen at $\delta 2.94$. The stereoisomer with the ester group cis to the hydrogen should absorb near $\delta 3.5$. ${ }^{\text {bh, } 19}$ The chemical shifts of the olefinic protons of $30 \mathrm{a}(\delta \mathrm{Hz} 5.10, \mathrm{brt}, J=2.5 \mathrm{~Hz}$) and 35 a ($\delta 4.86$, dd, $J=1.8,3.8 \mathrm{~Hz}$ and $\delta 4.79$, dd, $J=1.8,4.1 \mathrm{~Hz}$) are analogous to those of 20 a and 23 , respectively. The structure of $\mathbf{3 2 a}$ is assigned based on absorptions at $\delta 5.68$ (ddt, $J=4.8,9.9,2.1 \mathrm{~Hz}$) and at $\delta 5.52$ (ddt, $J=3.0,9.9$, 1.5 Hz) that are indicative of a cis double bond with two allylic hydrogens on one end and one on the other end.
The CHCl of 36 b absorbs at $\delta 4.57$ (ddd, $J=5.3,10.1$, 10.1 Hz). The two large coupling constants indicate that the H is axial and the Cl equatorial. In $\mathrm{C}_{8} \mathrm{D}_{6}$, the alkene hydrogens of 32 b absorb at $\delta 5.60$ (br d, $J=9.9 \mathrm{~Hz}$) and 5.38 (ddt, $J=5.3,9.9,1.8 \mathrm{~Hz}$) and the CHCl absorbs at $\delta 4.78$ ($\mathrm{br} \mathrm{d}, J=10.0 \mathrm{~Hz}$) indicating that 32 b is an allylic chloride with a cis double bond and an equatorial chloride. In $\mathrm{C}_{6} \mathrm{D}_{6}$, the alkene hydrogens of 33 b absorb at $\delta 6.12$ (dt, $J=9.6,2.1 \mathrm{~Hz}$) and 5.22 (ddd, $J=3.8,3.9,9.6 \mathrm{~Hz}$) and the CHCl absorbs at $\delta 4.88$ (ddd, $J=6.6,8.8,11.5 \mathrm{~Hz}$) indicating that 33b is a homoallylic chloride with a cis double bond and an equatorial chloride.
The bicyclo[3.3.1]nonane structure of adduct 52b was established based on the presence of only two benzylic hydrogen resonances at $\delta 3.48$ and 3.15 in the ${ }^{1} \mathrm{H}$ NMR spectrum, the absorbtion of the ketone carbonyl carbon at $\delta 203.1$, a value consistent with a cyclohexanone but not with a cyclopentanone, ${ }^{20}$ and the IR absorption of the cyclohexanone at $1715 \mathrm{~cm}^{-1}$. The stereochemistry of 57 b was assigned based on the doublet for the benzylic methine hydrogen at $\delta 5.40(J=10.3 \mathrm{~Hz})$, which indicates that the hydrogen and adjacent ring fusion hydrogen are in a trans diaxial relationship to one another so that the chlorine must be equatorial. The coupling constants for the benzylic methine hydrogen of the cis-fused stereoisomers of 58 b of 4.8 and 2.9 Hz do not permit assignment of stereochemistry. The coupling constants between the methine hydrogens are $10.3,9.5$, and 8.8 Hz in 60,63 , and 64 , respectively, in which the hydrogens are trans diaxial and 4.6 and 4.5 Hz in 61 and 62 , respectively, in which the hydrogens are cis.

Relative Reactivity of Alkenes to Acetoacetate Radicals. The presence of the chlorine substituent on the double bond controls the regioselectivity of the reaction. However, from the cyclizations we have examined we

[^6]cannot determine whether this is due to acceleration of the pathway that gives the α-chloroalkyl radical or steric hindrance by the chlorine retarding the pathway that would give the β-chloroalkyl radical. These questions can be answered by determining the effect of a halide substituent on the rate of addition to the double bond. The rates of reactions of radicals with alkenes depend on the substituents on the radical center as well as the double bond. Although these reactions have been extensively studied, ${ }^{21}$ there are only a few studies ${ }^{22}$ using very electrophilic radicals bearing two carbonyl groups on the radical center and the addition of these radicals to haloalkenes has not been examined.

We have carried out intramolecular competition experiments in the oxidative cyclization of γ, γ-bis(allylic) acetoacetates. ${ }^{3 m}$ These indicate that 1,1-disubstituted alkenes are much more reactive than monosubstituted double bonds and that monosubstituted and 1,1 -(chloro)alkyl disubstituted double bonds react at the same rate in 6 -endo-cyclizations. These results suggest that a chlorine substituent controls the regioselectivity of α-keto radical cyclizations by sterically retarding addition of the radical to the chlorine bearing double-bond carbon.

We determined the relative rates of addition of the α-keto radical derived from ethyl 2-methylacetoacetate (66) to 2 -bromo- 1 -propene (67), 1 -hexene (75), and 2 -methyl-1-pentene (78) to confirm this observation. Oxidation of

66 with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in the presence of 2-bromo-1-propene (67), which was used since simple 2-chloro-1-alkenes are inaccessible, affords 33% of a $1: 3$ mixture of $68 E$ and $68 Z, 16 \%$ of $69,8 \%$ of $71,24 \%$ of 72, and a trace of 70, 73, and 74. The α-keto radical adds to 67 to give the α-bromoalkyl radical that is oxidized to 68 and 69. Oxidation of the radical to a cation leads to ketone 71. The bromide liberated in the formation of 71 can react with the α-keto radical to give 72 and with the α-bromoalkyl radical to give 71. Oxidation of 66 with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and LiBr in the presence of 2 -bromo-1-

[^7]propene (67) gives a $29: 1$ mixture of 72 and 70 as the only products.

Oxidation of 66 in the presence of 1-hexene gives 82% of a $2: 1$ mixture of 76 and $77,8 \%$ of 73 , and 7% of 74 . We have previously reported that oxidation of 66 in the absence of an alkene gives 73 and 74 while oxidation in the presence of 2-methyl-1-pentene (78) gives 79 as a mixture of isomers and a trace of acetate $80 .{ }^{3 d}$

Competition reactions were carried out by oxidation of 66 in the presence of 5 equiv of two of the three alkenes to ensure that the alkenes were present in large excess. The product mixtures were examined by capillary GC and ${ }^{1} \mathrm{H}$ NMR spectroscopy. We found that 2-methyl-1-pentene is about four times more reactive than 2-bromo-1-propene and 2.8 times more reactive than 1-hexene. 1-Hexene is about 1.3 times more reactive than 2-bromo-1-propene. These results indicate that a bromine substituent slightly retards the addition of the electrophilic α-keto radical to the alkene so that the selectivity observed in the cyclization reactions is probably due to steric retardation of addition to the chlorine bearing double-bond carbon. An elec-tron-donating methyl substituent acclerates addition of the α-keto radical to the alkene by only a factor of 4 , which is significantly smaller than the factor of 15 observed with the malononitrile radical. ${ }^{22 b}$

Conclusion

The results described above indicate that a chlorine substituent on the double bond controls the regioselectivity of the radical cyclization. Substituents on the internal end of the double bond hinder exo-cyclization thereby favoring endo-cyclization. Conversely, substituents on the terminal end of the double bond hinder endo-cyclization thereby favoring exo-cyclization. The products contain chlorine that can be eliminated to introduce unsaturation as in the synthesis of naphthols 8 and 17 or reductively cleaved as in the preparation of 53a and 54a. We expect that use of haloalkenes will be a generally useful approach for controlling the regioselectivity of free-radical cyclizations.

Experimental Section

NMR spectra were recorded at 300 MHz in CDCl_{3} unless otherwise indicated. Chemical shifts are reported in δ and coupling constants in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR multiplicities were determined using APT or DEPT experiments. IR spectra are recorded in cm^{-1}. Analytical GC was performed on a Perkin-Elmer 8310 fitted with a flame ionization detector. A $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ fused silica column containing RSL 150 was used at a helium flow rate of $25 \mathrm{~mL} / \mathrm{min}$. A temperature program starting at $60^{\circ} \mathrm{C}$, increasing to $150^{\circ} \mathrm{C}$ at a rate of $10^{\circ} \mathrm{C} / \mathrm{min}$, holding at $150^{\circ} \mathrm{C}$ for 5 min , increasing to $190^{\circ} \mathrm{C}$ at a rate of $20^{\circ} \mathrm{C} / \mathrm{min}$, and holding at $190^{\circ} \mathrm{C}$ for 8 min was used. The injector temperature was $240^{\circ} \mathrm{C}$. The detector temperature was $280^{\circ} \mathrm{C}$. Combustion analyses were performed by Spang Microanalytical Laboratory. $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ was purchased from Aldrich. All alkylations and oxidative cyclizations were run under N_{2}.

Preparation of 1-Phenyl-7(Z)-decene-1,3-dione (1a). To a solution of LDA (6.8 mmol of diisopropylamine and 6.8 mmol of $n-\mathrm{BuLi}$ in 20 mL of THF) at $0^{\circ} \mathrm{C}$ was added dropwise benzoylacetone ($0.500 \mathrm{~g}, 3.1 \mathrm{mmol}$) in 10 mL of THF. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, and a solution of 1-bromo-3(Z)-hezene $(0.552 \mathrm{~g}, 3.4 \mathrm{mmol})$ in 10 mL of THF was added dropwise. The misture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at rt for 16 h . Workup as described below for $\mathbf{4 b}$ gave 650 mg of crude 1a. Flash chromatography on silica gel (4:1 hexane-ether) gave $0.623 \mathrm{~g}(80 \%)$ of 1 a as a $20: 1$ mixture of enol and keto tautomers: ${ }^{1} \mathrm{H}$ NMR 7.87 (d, 2, $J=7.1$), 7.42-7.52 (m, 3), 6.18 (s, 1), 5.33-5.46 (m, 2), 2.44 $(\mathrm{t}, 2, J=7.7), 2.00-2.16(\mathrm{~m}, 4), 1.73-1.80(\mathrm{~m}, 2), 0.97(\mathrm{t}, 3, J=$ 7.2); ${ }^{13} \mathrm{C}$ NMR 196.8, 183.5, 135.1, 132.8, 132.3, 128.6, 127.9, 127.0, 96.1, 38.6, 26.6, 25.8, 20.6, 14.4; IR (CDCl_{3}) 1609. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}$: $\mathrm{C}, 78.65 ; \mathrm{H}, 8.25$. Found: $\mathrm{C}, 78.76 ; \mathrm{H}, 8.31$.

Preparation of ($4 \mathrm{a} \alpha, 10 \alpha$)-3,4,4a,10-Tetrahydro-10-ethyl-9-hydroxy-1(2H)-anthracenone (3a). To a solution of Mn(O$\mathrm{Ac})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(219 \mathrm{mg}, 0.82 \mathrm{mmol})$ in 4 mL of glacial acetic acid was added $1 \mathrm{a}(0.100 \mathrm{~g}, 0.41 \mathrm{mmol})$. The mixture was stirred for 20 h at rt at which time the solution color had changed from dark brown to off-white. The reaction mixture was poured into water $(100 \mathrm{~mL})$, which was extracted with ether $(3 \times 100 \mathrm{~mL})$. The combined ether layers were washed with saturated NaHCO_{3} solution, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to afford 96 mg (99%) of crude 3a. Flash chromatography on silica gel ($10: 1$ hexane-EtOAc) gave $57 \mathrm{mg}(58 \%)$ of 3 a as a light yellow solid: $\operatorname{mp} 82-83{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR 8.01 (dd, $1, J=7.0,2.0$), 7.49 (ddd, $1, J$ $=7.0,7.0,2.0$), $7.34-7.38(\mathrm{~m}, 2), 2.68$ (ddd, $1, J=13.5,3.6,3.6$, H_{10}), 2.58 (ddd, $1, J=13.5,13.5,5.0, \mathrm{H}_{40}$), 2.44-2.50 (m, 2), 2.12-2.26 (m, 2), 1.88-2.06 (m, 2), 1.55-1.71 (m, 1), 1.22-1.38 (m, 1), 0.93 ($\mathrm{t}, 3, J=7.7$); ${ }^{13} \mathrm{C}$ NMR 189.0, 182.1, 143.3, 132.5, 132.3, 126.7, 126.5, 125.1, 108.2, 42.4, 34.4, 32.6, 27.7, 21.0, 18.6, 7.7; IR $\left(\mathrm{CDCl}_{3}\right)$ 1594. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}: \mathrm{C}, 79.31 ; \mathrm{H}, 7.49$. Found: C, 79.16; H, 7.41.
Preparation of 1-Phenyl-7-nonyne-1,3-dione (4b). To a solution of LDA (22 mmol of diisopropylamine and 22 mmol of $n-\mathrm{BuLi}$ in 20 mL of THF) at $0^{\circ} \mathrm{C}$ was added dropwise benzoylacetone ($1.78 \mathrm{~g}, 11 \mathrm{mmol}$) in 5 mL of THF. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, at which time DMPU ($2.5 \mathrm{~mL}, 22 \mathrm{mmol}$) and 5 -bromo-2-pentyne ${ }^{5 a}(1.6 \mathrm{~g}, 11 \mathrm{mmol})$ were added. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1.0 h and then warmed to $25^{\circ} \mathrm{C}$ for 2.0 h . The reaction was quenched by the addition of 150 mL of water. The mixture was acidified with 40 mL of $10 \% \mathrm{HCl}$ and extracted with $3 \times 70 \mathrm{~mL}$ of ether. The combined organic layers were washed with 40 mL of saturated NaHCO_{3} and 80 mL of brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of solvent in vacuo gave 2.53 g of crude product. Flash chromatography on silica gel ($20: 1$ hex-ane-EtOAc) gave $1.51 \mathrm{~g}(60 \%)$ of 4 b as a $20: 1$ mixture of enol and keto tautomers: ${ }^{1} \mathrm{H}$ NMR (enol) 16.16 (s, 1), 7.88 ($\mathrm{m}, 2$), 7.46 (m, 3), 6.19 ($\mathrm{s}, 1$), $2.54(\mathrm{t}, 2, J=7.5$), 2.23 (m, 2), 1.86 (tt, 2, J $=7.5,7.0), 1.78(\mathrm{t}, 3, J=2.6)$; (keto) $7.40-7.90(\mathrm{~m}, 5), 4.10(\mathrm{~s}, 2)$, $2.71(\mathrm{t}, 2, J=7.2), 2.15(\mathrm{~m}, 2), 1.80(\mathrm{~m}, 2), 1.75(\mathrm{t}, 3, J=2.5)$; ${ }^{13} \mathrm{C}$ NMR (enol) 196.4, 183.1, 134.9, 132.2, 128.5, 126.9, 96.2, 78.0, $76.5,38.1,24.9,18.3,3.4$; (keto) 133.7, 128.7, 127.1, 53.9, 42.1, 22.5, 18.0, 6 C not observed; IR (neat) $3070,2960,2920,1610$ (br), 1455, 1265, 760, 690. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 78.92; H, 7.06. Found: C, 79.17; H, 7.18.

1-Phenyl-8-(trimethylsilyl)-7-octyne-1,3-dione (4c) was prepared as described for 4b from LDA (4.6 mmol), benzoylacetone ($472 \mathrm{mg}, 2.3 \mathrm{mmol}$), DMPU ($0.52 \mathrm{~mL}, 4.6 \mathrm{mmol}$), and 4-bromo-1-(trimethylsilyl)-1-butyne ${ }^{5 b}$ ($373 \mathrm{mg}, 2.3 \mathrm{mmol}$) in 8 mL of THF. Flash chromatography of 500 mg of 666 mg of crude product on silica gel ($25: 1$ hexane-EtOAc) gave 236 mg (48%) of 4 c as a $20: 1$ mixture of enol and keto tautomers: mp 42.0-42.5 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (enol) 16.12 (s, 1), 7.85 (m, 2), 7.46 (m, 3), 6.20 (s, 1), $2.50(\mathrm{t}, 2, J=7.4), 2.34(\mathrm{t}, 2, J=7.0), 1.91(\mathrm{tt}, 2, J=7.4,7.0)$, 0.17 (s, 9); (keto) $7.40-7.90(\mathrm{~m}, 5), 4.11$ (s, 2), 2.74 (t, 2, $J=7.0$), $2.25(\mathrm{t}, 2, J=6.8), 1.82(\mathrm{tt}, 2, J=6.8,7.0), 0.19(\mathrm{~s}, 9) ;{ }^{13} \mathrm{C}$ NMR (enol) 196.1, 183.1, 134.9, 132.3, 128.6, 127.0, 106.1, 96.3, 85.6, 37.9, $24.4,19.4,0.1$; (keto) 132.2, 128.4, 127.2, 54.0, 41.9, 22.2, 19.0, 0.2 , 5 C not observed; IR (neat) 2960, 2900, 2170, 1610 (br), 835, 755, 690. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si}$: C, 71.28; $\mathrm{H}, 7.74$. Found: C , 71.21; H, 7.62 .

Preparation of 3,4-Dihydro-9-hydroxy-10-(acetoxy-methyl)-1(2H)-anthracenone (7). To a solution of $\mathrm{Mn}(\mathrm{O}-$ Ac) $3_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(600 \mathrm{mg}, 2.2 \mathrm{mmol})$ in 10 mL of glacial acetic acid was added 4 b ($114 \mathrm{mg}, 0.5 \mathrm{mmol}$). The mixture was stirred for 17 h at $35^{\circ} \mathrm{C}$ and worked up to give 150.0 mg of crude product. Flash chromatography on silica gel ($10: 1$ hexane-EtOAc) gave 115.0 mg (81%) of yellow crystalline 7: $\mathrm{mp} 143.0-143.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR 14.68 ($\mathrm{s}, 1$), 8.47 (br d, $1, J=8.5$), 7.95 (br d, 1, $J=8.5$), 7.69 (ddd, 1 , $J=8.5,6.9,1.4), 7.50(\mathrm{ddd}, 1, J=8.5,6.9,1.0), 5.53$ (s, 2), 3.18 (t, 2, $J=6.2$), 2.76 (t, 2, $J=6.5$), 2.15 ($\mathrm{tt}, 2, J=6.5,6.2$), 2.07 (s, 3); ${ }^{13} \mathrm{C}$ NMR 205.4, 171.2, 164.4, 138.9, 136.7, 131.1, 125.2, 124.9, 124.1, 123.4, 117.9, 111.1, 59.4, 38.5, 26.8, 22.3, 21.0; IR (KBr) 3080, 3020, 2960, 2880, 1740, 1630, 1595, 1500, 1015, 945, 765. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4}$: $\mathrm{C}, 71.82 ; \mathrm{H}, 5.67$. Found: $\mathrm{C}, 71.72 ; \mathrm{H}, 5.66$.
Preparation of $3,4,3^{\prime}, 4^{\prime}$-Tetrahydro-9,9'-dihydroxy[$10,10^{\prime}$-bianthracene]-1, $\mathbf{1}^{\prime}\left(2 H, 2^{\prime} H\right)$-dione (9). To a solution of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot \mathrm{H}_{2} \mathrm{O}(245 \mathrm{mg}, 0.9 \mathrm{mmol})$ in 6 mL of glacial acetic acid was added $4 \mathrm{c}(57 \mathrm{mg}, 0.2 \mathrm{mmol})$. The reaction was stirred
for 24 h at $35^{\circ} \mathrm{C}$ and worked up to give 60.0 mg of crude product. Flash chromatography of 30.0 mg on silica gel ($20: 1$ hexane-EtOAc) gave $15.0 \mathrm{mg}(71 \%)$ of 9 as a yellow solid: $\mathrm{mp} 253^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR 14.52 (s, 2), 8.54 (dd, $2, J=1.5,8.0$), 7.48 (ddd, $2, J=$ $1.5,8.0,6.9$), 7.40 (ddd, $2, J=1.5,8.3,6.9$), 7.00 (br d, $2, J=8.3$), 2.76 (t, 4, $J=6.5$), $2.53(\mathrm{dt}, 2, J=16.6,6.4), 2.44(\mathrm{dt}, 2, J=16.6$, 6.2), 1.97 (m, 4); ${ }^{13} \mathrm{C}$ NMR 205.6, 163.3, 137.1, 137.0, 130.9, 125.3, 125.2, 124.7, 124.2, 123.3, 111.5, 38.9, 27.7, 22.6; IR (KBr) 3080, $2950,2880,1630,1595,1500,1415,1380,1350,1335,1315,765$; MS (m / z) $422\left(100, \mathrm{M}^{+}\right), 423$ (30.2). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{O}_{4}$: C, 79.60; H, 5.25. Found: C, 77.64; H, 5.85 .

Reaction of $4 \mathrm{c}(15 \mathrm{mg}, 0.05 \mathrm{mmol})$ with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(27$ $\mathrm{mg}, 0.1 \mathrm{mmol}$) in a buffered solution of HOAc and KOAc (1 mL and $300 \mathrm{mg}, 5.6: 1$ mole ratio) for 3 h at $25^{\circ} \mathrm{C}$ gave 15.0 mg of a 7:1:2 mixture of $\mathbf{4 c}, \mathbf{8 , 9}$ as determined by analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum.
8-Chloro-1-phenyl-7-octene-1,3-dione (10 E and $10 Z$) was prepared as described for $\mathbf{4 b}$ from LDA (7.5 mmol), benzoylacetone ($600 \mathrm{mg}, 3.7 \mathrm{mmol}$), DMPU ($0.85 \mathrm{~mL}, 7.5 \mathrm{mmol}$), and 4-bromo-1-chloro-1-butene ${ }^{6}$ ($\left.E / Z(2: 1), 635 \mathrm{mg}, 3.75 \mathrm{mmol}\right)$ in 10 mL of THF. Flash chromatography of 435 mg of the 820 mg of crude product on silica gel ($20: 1$ hexane-EtOAc) gave 284.0 mg (57%) of a $2: 1$ mixture of $10 E$ and $10 Z$ as a $20: 1$ mixture of enol and keto tautomers: ${ }^{1} \mathrm{H}$ NMR (E, enol) 16.14 (s, 1), 7.84 ($\mathrm{m}, 2$), 7.45 (m, 3), 6.16 (s, 1), 6.00 (dt, $1, J=13.2,0.9$), $5.90(\mathrm{dt}, 1, J=$ 13.2, 6.9), 2.44 (t, 2, $J=7.5$), 2.15 (ddt, $2, J=0.9,6.9,7.2$), 1.80 ($\mathrm{m}, 2$); (E, keto) $7.42-7.91$ ($\mathrm{m}, 5$), $5.72-6.18(\mathrm{~m}, 2), 4.08(\mathrm{~s}, 2), 2.60$ ($\mathrm{t}, 2, J=7.2$), 2.06 (m, 2), 1.72 (m, 2); (Z, enol) 16.14 (s, 1), 7.85 ($\mathrm{m}, 2$), $7.47(\mathrm{~m}, 3), 6.19(\mathrm{~s}, 1), 6.08(\mathrm{dt}, 1, J=7.0,1.5), 5.78(\mathrm{dt}$, $1, J=7.0,7.2$), 2.47 ($\mathrm{t}, 2, J=7.5$), 2.32 (ddt, 2, $J=1.5,7.2,6.5$), $1.84(\mathrm{~m}, 2)$; $(Z$, keto $) 7.40-7.90(\mathrm{~m}, 5), 5.70-6.20(\mathrm{~m}, 2), 4.10(\mathrm{~s}$, 2), 2.62 (t, 2, $J=7.2$), 2.26 (ddt, $2, J=1.5,7.1,6.6$), 1.73 (m, 2); ${ }^{13} \mathrm{C}$ NMR (E, enol) 196.1, 183.3, 134.8, 132.3, 130.6, 128.6, 127.0, 117.8, 96.2, 38.2, 30.2, 24.7; (E, keto) 132.5, 130.5, 128.7, 127.1, 118.9, 53.8, 42.2, 29.9, 22.4, 3 C not observed; (Z, enol) 196.2, 183.2, $134.9,132.2,130.6,128.6,127.0,119.0,96.2,38.5,26.5,24.4$; IR (neat) mixture: $3060,2940,1600$ (br), 1455, 760, 690. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ClO}_{2}: \mathrm{C}, 67.07 ; \mathrm{H}, 6.03$. Found: $\mathrm{C}, 67.21 ; \mathrm{H}, 5.99$.

Preparation of 3,4-Dihydro-9-hydroxy-1(2H)anthracenone (8). To a solution of $\mathrm{Mn}\left(\mathrm{OAc}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(50 \mathrm{mg}, 0.19\right.$ mmol) in 2 mL of glacial acetic acid was added 10 E and $10 Z$ (2:1, $22.5 \mathrm{mg}, 0.09 \mathrm{mmol}$). The reaction was stirred at $35^{\circ} \mathrm{C}$ for 15 h and worked up to give 21.9 mg of crude product containing 8 and a trace of 9 as determined by ${ }^{1} \mathrm{H}$ NMR. Flash chromatography of 20.0 mg on silica gel ($20: 1$ hexane-EtOAc) gave 13.8 mg (79\%) of 8 as a yellow solid: $\mathrm{mp} 93.0-94.0^{\circ} \mathrm{C}$ (lit. $.^{2} \mathrm{mp} 93.5-94.0$ ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR 14.19 ($\mathrm{s}, 1$), 8.38 (br d, $1, J=8.3$), 7.65 (br d, 1 , $J=7.9$), 7.59 (ddd, $1, J=1.3,6.6,7.9$), 7.44 (ddd, $1, J=1.5,6.6$, 8.3), $7.05(\mathrm{~s}, 1), 3.03(\mathrm{t}, 2, J=6.2), 2.76(\mathrm{t}, 2, J=6.5), 2.14(\mathrm{tt}$, $2, J=6.2,6.5) ;{ }^{13} \mathrm{C}$ NMR 205.1, 163.2, 138.3, 137.4, 130.3, 126.8, 125.0, 124.4, 123.8, 116.2, 111.5, 39.0, 30.2, 23.0; IR (neat) 2950, $1630,1600,1580,1495,1460,1415,1385,1355,1340,1320,840$, 760.

Dimerization of 8. To a solution of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (15.0 $\mathrm{mg}, 0.055 \mathrm{mmol}$) in 0.5 mL of glacial acetic acid was added 8 (10.6 $\mathrm{mg}, 0.05 \mathrm{mmol}$) in 0.1 mL of HOAc. The reaction was stirred at $35^{\circ} \mathrm{C}$ for 24 h and worked up to give 10.5 mg of crude product. Flash chromatography gave 9.0 mg (86%) of 9.

Preparation of 1-(2,4-Dimethoxyphenyl)-1,3-butanedione (12). To a solution of 2,4 -dimethoxybenzoic acid ($5.0 \mathrm{~g}, 27.0 \mathrm{mmol}$) in 20 mL of anhydrous ether was added oxalyl chloride (5.0 mL , 56.7 mmol). The solution was heated at reflux for 2 h , and the solvent was removed in vacuo to give the acid chloride (5.50 g) as a white powder. To a solution of this acid chloride in 30 mL of THF at $-78^{\circ} \mathrm{C}$ was added dropwise a solution of the enolate of acetone (prepared from 55.0 mmol of LDA and 55.0 mmol of acetone in 100 mL of THF at $-78^{\circ} \mathrm{C}$) over 20 min . The solution was stirred at $-78^{\circ} \mathrm{C}$ to $-60^{\circ} \mathrm{C}$ for 1 h . The solvent was removed, and the residue was diluted with 200 mL of ether. The ether solution was washed with 40 mL of $10 \% \mathrm{HCl}$ solution, 40 mL of saturated NaHCO_{3} solution, and 40 mL of brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to afford crude 12 (7.17 g). Flash chromatography ($6: 1$ hexane-EtOAc) on silica gel gave 4.50 g (75%) of pure 12 as a 3:1 mixture of enol and keto tautomers: $\mathrm{mp} 67.0-68.0^{\circ} \mathrm{C}$ (lit. $.^{7} \mathrm{mp} 68.0-69.0^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (enol) 16.49 (s, 1), 7.91 (d, $1, J=8.8$), 6.55 (dd, $1, J=8.8,2.3$), 6.46 (d, $1, J$
$=2.3$), $6.45(\mathrm{~s}, 1), 3.88(\mathrm{~s}, 3), 3.84(\mathrm{~s}, 3), 2.16(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR 193.5, 181.0, 163.8, $160.2,131.8,116.7,105.1,100.7,98.5,55.5,55.4,25.8 ;$ (keto) ${ }^{1} \mathrm{H}$ NMR 7.90 (d, $1, J=8.8$), 6.54 (dd, $1, J=8.8,2.3$), 6.42 (d, $1, J=2.3$), $4.00(\mathrm{~s}, 2), 3.85(\mathrm{~s}, 3), 3.84(\mathrm{~s}, 3), 2.23(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR 203.1, 192.7, 165.2, 160.9, 133.0, 119.7, 105.7, 98.1, 58.8, 55.5, $55.3,30.2$; IR (KBr) 3010, 2960, 2850, 1610, 825, 790.
Dione 12 was also prepared in 40% yield by Seebach's procedure. ${ }^{8}$

8-Chloro-1-(2,4-dimethoxyphenyl)-7-octene-1,3-dione (13E and $13 Z$) was prepared as described for $4 b$ from LDA (1.2 mmol), $12(125.0 \mathrm{mg}, 0.56 \mathrm{mmol}), \operatorname{DMPU}(0.14 \mathrm{~mL}, 1.2 \mathrm{mmol})$, and 4-bromo-1-chloro-1-butene ${ }^{6}$ ($\left.E / Z(2: 1), 96.6 \mathrm{mg}, 0.56 \mathrm{mmol}\right)$ in 5 mL of THF. Flash chromatography ($6: 1$ hexane-EtOAc) of the crude product on silica gel gave $118.6 \mathrm{mg}(68 \%)$ of a $2: 1$ mixture of $13 E$ and $13 Z$ as a $3: 1$ mixture of enol and keto tautomers: mp $49.0-50.0^{\circ} \mathrm{C}^{1}{ }^{1} \mathrm{H}$ NMR $16.45(\mathrm{~s}, 1 \times 0.75), 7.93(\mathrm{~d}, 1 \times 0.75, J=$ 8.7), 7.90 (d, $1 \times 0.25, J=8.7$), 6.57 (dd, $1 \times 0.75, J=8.7,2.4$), 6.55 (dd, $1 \times 0.25, J=8.7,2.4$), $6.47(\mathrm{~d}, 1 \times 0.75, J=2.4), 6.46$ (s, enol/ $E, 1 \times 0.5$), 6.45 (s, enol $/ Z, 1 \times 0.25, J=2.4$), 6.43 (d, $1 \times 0.25, J=2.4), 6.06-5.72(\mathrm{~m}, 2), 4.01(\mathrm{~s}, 2 \times 0.08$ keto $/ Z), 4.00$ $(\mathrm{s}, 2 \times 0.17$ keto $/ E), 3.90(\mathrm{br} \mathrm{s}, 3), 3.86(\mathrm{br} \mathrm{s}, 3), 2.52(\mathrm{t}, 2 \times 0.25$, $J=7.2), 2.40(\mathrm{t}, 2 \times 0.75, J=7.7), 2.27-2.07(\mathrm{~m}, 2), 1.82-1.65$ (m, 2); ${ }^{13} \mathrm{C}$ NMR 204.6 (keto), 195.6 (enol), 192.9 (keto), 181.3 (enol), 165.2 (keto), 163.9 (enol), 160.9 (keto), 160.3 (enol), 133.1 $($ keto $/ E), 133.0(\mathrm{keto} / E+\mathrm{enol} / E), 132.9(\mathrm{enol} / Z), 132.0(\mathrm{enol} / E)$, 130.8 (enol/Z), 118.7 (keto/E), 117.7 (enol/Z), 117.63 (enol/E), 117.57 (keto/Z), 116.9 (enol/E), 105.7 (keto/E), 105.6 (enol/ Z), $105.1(\mathrm{enol} / E), 100.44(\mathrm{enol} / E), 100.37(\mathrm{enol} / Z), 98.6$ (enol/E), 98.5 (enol/Z), 98.2 (keto/E), 58.2 (keto/E), 55.7 (enol/Z), 55.6 (enol + keto), 55.5 (enol $/ E$), 55.4 (keto/ E), 41.8 (keto/ E), 38.5 (enol/Z), 38.1 (enol/E), 30.2 (enol/E), 30.0 (keto/E), 26.5 (enol/Z), 24.9 (enol/E), 24.5 (enol/Z), 22.4 (keto/E); IR (KBr) 2940, 1615, 1210, 825, 790. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{ClO}_{4}: \mathrm{C}, 61.84 ; \mathrm{H}, 6.16$; $\mathrm{Cl}, 11.41$. Found: C, $61.66 ; \mathrm{H}, 6.10 ; \mathrm{Cl}, 11.46$.

Preparation of 15-17. To a solution of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(75.0$ $\mathrm{mg}, 0.27 \mathrm{mmol}$) in 4 mL of glacial acetic acid was added $13 E$ and $13 Z(2: 1,42.0 \mathrm{mg}, 0.135 \mathrm{mmol})$. The reaction was stirred at 35 ${ }^{\circ} \mathrm{C}$ for 8 h and worked up to give 44.0 mg of crude product. Flash chromatography (12:1 hexane-EtOAc) on silica gel gave 8.4 mg (20%) of recovered 13 followed by 4.3 mg (12%) of pure 17 and $16.7 \mathrm{mg}(38 \%)$ of a $1: 1$ mixture of 15 and 16.

The data for 17: mp $125.0-126.0{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $15.25(\mathrm{~s}, 1), 6.85$ (s, 1), 6.55 (d, $1, J=2.2$), $6.42(\mathrm{~d}, 1, J=2.2), 3.99(\mathrm{~s}, 3), 3.91(\mathrm{~s}$, 3), $2.95(\mathrm{t}, 2, J=6.1), 2.73(\mathrm{t}, 2, J=6.5), 2.09(\mathrm{tt}, 2, J=6.1,6.5)$; ${ }^{13}$ C NMR 203.9, 166.0, 164.1, 161.2, 141.8, 139.9, 115.7, 110.8, 105.8, 98.8, 97.7, 56.1, 55.4, 38.8, 30.2, 22.8; IR (KBr) 2950, 1610, 1260 , 820, 795. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}: \mathrm{C}, 70.58 ; \mathrm{H}, 5.92$. Found: C, 70.40; H, 6.05 .
Reaction of 0.05 mmol of 13 and 0.1 mmol of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in 0.5 mL of HOAc and 0.5 mL of $\mathrm{CF}_{3} \mathrm{COOH}$ at $25^{\circ} \mathrm{C}$ for 13 h gave, after flash chromatography, 30% of 17 and 10% of a $1: 1$ mixture of 15 and 16.

Reaction of 0.05 mmol of $13,0.2 \mathrm{mmol}$ of LiCl , and 0.1 mmol of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in 1 mL of HOAc at $25{ }^{\circ} \mathrm{C}$ for 17 h gave 68% of pure 15 after flash chromatography: ${ }^{1} \mathrm{H}$ NMR 7.97 (d, $1, J=$ 8.9), 6.57 (dd, $1, J=2.3,8.9$), 6.41 (d, $1, J=2.3$), 5.99 (d, $1, J$ $=2.5$), 4.69 (d, 1, $J=11.5$), $3.86(\mathrm{~s}, 3), 3.84$ (s, 3), 3.02 (dddd, 1 , $J=2.5,3.7,11.7,11.5), 2.52(\mathrm{~m}, 2), 2.45(\mathrm{~m}, 1), 2.23(\mathrm{~m}, 1), 1.96$ (dddd, $1, J=3.7,13.2,11.6,13.4$), 1.76 (m, 1); ${ }^{13} \mathrm{C}$ NMR 206.9, $194.3,165.3,160.8,133.3,117.0,105.9,98.6,75.5,65.3,55.8,55.6$, 49.6, 41.9, 24.4, 22.8; IR (neat) 2980, 2940, 2870, 1725, 1660. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{4}$: $\mathrm{C}, 55.67 ; \mathrm{H}, 5.26$. Found: C, $54.97 ; \mathrm{H}$, 5.32.

Reaction of 0.05 mmol of $13,0.1 \mathrm{mmol} \mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and 300 mg of KOAc in 1 mL of HOAc at $25^{\circ} \mathrm{C}$ for 18 h gave, after flash chromatography, 5% of $17,31 \%$ of 16 , and 5% of 15 . The above reaction was repeated, and the crude product was dissolved in 1 mL of MeOH containing 5 equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The solution was stirred at $25^{\circ} \mathrm{C}$ for 3 h , worked up, and purified by flash chromatography to give 43% of pure 17 .

The data for 16: mp 147.0-148.0 ${ }^{\circ}{ }^{\circ}{ }^{\text { }}{ }^{1} \mathrm{H}$ NMR $16.42(\mathrm{~s}, 1), 7.05$ (dd, $1, J=1.0,2.3$), 6.49 (d, $1, J=2.3$), 4.73 (dd, $1, J=1.0,11.6$), 3.93 (s, 3), 3.91 (s, 3), 2.83 (ddd, $1, J=11.6,4.7,11.8$), 2.52 (m, 1), 2.45 (m, 2), $2.00(\mathrm{~m}, 1), 1.62(\mathrm{~m}, 1), 1.36(\mathrm{~m}, 1) ;{ }^{13} \mathrm{C}$ NMR 209.4, $168.3,164.2,162.0,145.2,138.7,118.1,104.1,98.7,64.8,56.3,55.6$, 41.1, 31.1, 28.8, 20.2; IR (KBr) 2950, 2860, 1630. Anal. Calcd for
$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClO}_{4}: \mathrm{C}, 62.24 ; \mathrm{H}, 5.55$. Found: C, $61.98 ; \mathrm{H}, 5.52$.
Attempted Hydrolysis of $15 .{ }^{15}$ To a solution of $15(3.6 \mathrm{mg}$, 0.01 mmol) in 0.4 mL of dioxane and 0.2 mL of $\mathrm{H}_{2} \mathrm{O}$ was added AgNO_{3} ($16.0 \mathrm{mg}, 0.1 \mathrm{mmol}$). The solution was stirred at $50^{\circ} \mathrm{C}$ for 14 h . Workup gave 3.6 mg of recovered 15.

Methyl 3-oxo-2-(2-propenyl)oct-6-enoate (28aE and 28aZ) was prepared as previously described ${ }^{3 i}$ from diisopropylamine (1.79 $\mathrm{mL}, 0.013 \mathrm{~mol}$), n-butyllithium (2.5 M in hexanes, $5.12 \mathrm{~mL}, 0.013$ mol), methyl 2 -allylacetoacetate ($1.00 \mathrm{~g}, 0.006 \mathrm{~mol}$), HMPA (2.23 $\mathrm{mL}, 0.013 \mathrm{~mol}$), and crotyl bromide (a $4: 1$ mixture of E and Z isomers, $0.66 \mathrm{~mL}, 0.006 \mathrm{~mol}$) in THF (21 mL). Purification of the crude product (1.423 g) by flash chromatography on silica gel ($10: 1$ hexane-EtOAc) gave $0.601 \mathrm{~g}(45 \%$) of a $4: 1$ mixture of $28 \mathrm{a} E$ and 28aZ: ${ }^{1} \mathrm{H} \operatorname{NMR}(28 \mathrm{a} E) 5.73$ (ddt, $1, J=10.0,17.0,7.1$), $5.52-5.28$ (m, 2), 5.09 (br d, 1, $J=17.0$), 5.04 (br d, 1, $J=10.0$), 3.73 (s, 3), 3.55 (t, 1, J=7.5), 2.68-2.48 (m, 4), 2.26 (dt, 2, J $=$ $6.6,7.5), 1.65-1.60(\mathrm{~m}, 3) ;(28 \mathrm{a} Z) 5.73$ (ddt, $1, J=10.0,17.0,6.9$), 5.52-5.28 (m, 2), 5.09 (br d, 1, $J=17.0$), 5.04 (br d, $1, J=10.2$), 3.73 (s, 3), 3.56 (t, $1, J=7.4$), 2.68-2.48 (m, 4), $2.30(\mathrm{dt}, 2, J=$ 7.2, 7.2), 1.65-1.60 (m, 3); ${ }^{13}$ C NMR (28aE) 204.0, 169.7, 134.2, 129.1, 126.4, 117.4, 58.4, 52.4, 42.0, 32.2, 26.3, 17.8; IR (neat) 3080 , 1745, 1715, 1640. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 68.54; H, 7.93. Found: C, 68.60; H, 7.74.

Oxidative cyclization of $28 \mathrm{a} E$ and $28 \mathrm{a} Z$ (301 mg of a $4: 1$ mixture, 1.43 mmol) with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(768 \mathrm{mg}, 2.86 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(286 \mathrm{mg}, 1.43 \mathrm{mmol})$ in glacial acetic acid (17 mL) for 11.5 h at rt followed by normal workup gave 269 mg of crude product. Flash chromatography of 252 mg ($10: 1$ hexaneEtOAc) on silica gel gave $116 \mathrm{mg}(41 \%)$ of methyl 5β-ethenyl3 -ox $0-1 \alpha$-(2-propenyl)cyclopentane-1 β-carboxylate (34), followed by 18 mg (6%) of a complex mixture of 13 products, containing 30a, 35a, and 32a as the major constituents in a 1.6:1.6:1 ratio.
The data for 34: ${ }^{1} \mathrm{H}$ NMR 5.69 (ddd, $1, J=7.5,10.2,17.6$), 5.59 (dddd, $1, J=5.8,8.9,10.0,17.0$), 5.19-5.10 (m, 4), 3.67 (s, 3), 2.94 (br dt, $1, J=7.5,8.4$), 2.73 (ddt, $1, J=5.8,14.2,1.4$), $2.65-2.56$ (m, 1), 2.52 (dd, $1, J=8.9,14.2$), 2.32-2.02 (m, 3); ${ }^{13} \mathrm{C}$ NMR $214.2(\mathrm{CO}), 170.2\left(\mathrm{CO}_{2}\right), 135.8(\mathrm{CH}), 132.7(\mathrm{CH}), 120.0$ $\left(\mathrm{CH}_{2}\right), 117.4\left(\mathrm{CH}_{2}\right), 62.8(\mathrm{C}), 52.0\left(\mathrm{CH}_{3}\right), 45.7(\mathrm{CH}), 38.6\left(\mathrm{CH}_{2}\right)$, $35.6\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 69.21 ; \mathrm{H}$, 7.75. Found: C, 69.40; H, 7.74 .

Partial spectral data of the minor components were determined from the mixture: ${ }^{1} \mathrm{H}$ NMR (30a) 5.10 (br t, $1, J=2.5$), 3.71 (s , 3), 1.13 (d, $3, J=6.8$), (35a) 4.86 (dd, $1, J=1.8,3.8$), 4.79 (dd, $1, J=1.8,4.1$), 3.74 (s, 3), 1.15 (d, $3, J=6.3$); (32a) 5.68 (ddt, $1, J=4.8,9.9,2.1$), 5.52 (ddt, $1, J=3.0,9.9,1.5$), $3.67(\mathrm{~s}, 3), 1.06$ (d, $3, J=6.9$).
Preparation of Methyl 7-Chloro-3-oxo-2-(2-propenyl)-hept-6-enoate ($28 \mathrm{~b} Z$ and $28 \mathrm{~b} E$). Methyl 7 -chloro-3-oxohept6 -enoate ${ }^{3 f}$ (0.495 g of a $2: 1$ mixture of Z and E isomers, 0.003 mol) in THF (2 mL) was added dropwise to a stirred suspension of $\mathrm{NaH}(0.108 \mathrm{~g}$ of a 60% dispersion in mineral oil, 0.003 mol) in THF (20 mL). After hydrogen evolution had ceased, the mixture was heated to reflux and allyl bromide ($0.22 \mathrm{~mL}, 0.003 \mathrm{~mol}$) was added over a period of 5 min . The resulting mixture was refluxed for 24 h , cooled to rt and poured into 200 mL of water. The aqueous solution was acidified with $10 \% \mathrm{HCl}$ and extracted with ether ($3 \times 25 \mathrm{~mL}$). The organic layers were combined, washed with saturated NaHCO_{3} solution, and dried over MgSO_{4}. Removal of the solvent in vacuo gave 0.631 g of crude product. Flash chromatography of 0.631 g ($9: 1$ hexane-EtOAc) on silica gel gave $0.301 \mathrm{~g}(50 \%)$ of a $2: 1$ mixture of $28 \mathrm{~b} Z$ and 28 bE : ${ }^{1} \mathrm{H}$ NMR (28b Z) $6.04(\mathrm{dt}, 1, J=7.0,1.3), 5.77(\mathrm{q}, 1, J=7.0), 5.80-5.65(\mathrm{~m}$, 1), 5.09 (br d, 1, $J=16.4$), 5.05 (br d, 1, $J=9.6$), 3.72 (s, 3), 3.57 (t, 1, J=7.5), $2.77-2.55$ (m, 4), $2.50(\mathrm{brdt}, 2, J=7.0,7.5$); (28bE) 6.00 (dt, $1, J=13.3,1.3$), 5.85 (dt, $1, J=13.3,6.9$), $5.80-5.65$ (m, 1), 5.09 (br d, $1, J=16.4$), 5.05 (br d, 1, $J=9.6$), 3.72 (s, 3), 3.55 (t, $1, J=7.4$), $2.77-2.55$ (m, 4), 2.34 (dq, $2, J=1.3,7.0$); ${ }^{23} \mathrm{C}$ NMR (28bZ) 203.4, 169.5, 134.0, 129.6, 119.2, 117.6, 58.1, 52.4, 40.5, 32.2, 20.9; (28bE) 203.0, 169.4, 134.0, 131.6, 118.4, 117.6, 58.3, 52.4, 41.1, 32.1, 24.6; IR (neat) 3080, 1749, 1715, 1641. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{ClO}_{3}$: C, 57.27; H, 6.55. Found: C, 57.44; H. 6.32.

Oxidative cyclization of 28 bZ and $28 \mathrm{a} E$ (400 mg of a $2: 1$ mixture, 1.73 mmol) with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(930 \mathrm{mg}, 3.47 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(346 \mathrm{mg}, 1.73 \mathrm{mmol})$ in glacial acetic acid (17 mL) for 20 h at rt followed by normal workup gave 405 mg of crude product. Flash chromatography of 400 mg (10:1 hexane-EtOAc)
on silica gel gave $208 \mathrm{mg}(53 \%)$ of a 1.1:1 mixture of 32b and 33b (53%), followed by 7 mg of a complex mixture of products containing a 4.4:2.5:1 ratio of one stereoisomer of 33 b and two stereoisomers of $\mathbf{3 5 b}$, followed by 12 mg of a complex mixture of containing a 1.4:1.1:1 ratio of two stereoisomers of 32b and 35b.

The data for 32b and 33b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)(33 \mathrm{~b}) 6.12$ (br dt, $1, J=9.6,2.1$), 5.22 (ddd, $1, J=3.8,3.9,9.6$), 4.88 (ddd, $1, J=$ $6.6,8.8,11.5$), 3.04 (s, 3), 2.52 (dddd, $1, J=2.1,3.9,6.6,18.6$), $2.27-1.65$ (m, 6); (32b) 5.60 (br d, $1, J=9.9$), 5.38 (ddt, $1, J=$ $5.3,9.9,1.8$), 4.78 (br d, 1, $J=10.0$), 3.02 (s, 3), 2.72 (dddd, $1, J$ $=5.3,17.6,1.6,1.6), 2.27-1.65(\mathrm{~m}, 6) ;{ }^{13} \mathrm{C}$ NMR 210.9 (CO), 207.6 $(\mathrm{CO}), 168.6\left(\mathrm{CO}_{2}\right), 168.4\left(\mathrm{CO}_{2}\right), 130.4(\mathrm{CH}), 130.1(\mathrm{CH}), 127.8(\mathrm{CH})$, $123.3(\mathrm{CH}), 63.1$ (C), 60.6 (C), $58.2(\mathrm{CH}), 55.4(\mathrm{CH}), 52.9(\mathrm{CH})$, $52.7(\mathrm{CH}), 51.4\left(\mathrm{CH}_{3}\right), 51.1\left(\mathrm{CH}_{3}\right), 38.4\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 36.8$ $\left(\mathrm{CH}_{2}\right), 30.4\left(\mathrm{CH}_{2}\right), 23.0\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right)$; IR (neat) 3039,1760 , 1730, 1637. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{3}$: C, 57.77; H, 5.73. Found: $\mathrm{C}, 57.68 ; \mathrm{H}, 5.85 . \mathrm{C}_{6} \mathrm{D}_{6}$ was used for the ${ }^{1} \mathrm{H}$ NMR spectrum since the downfield peaks overlapped in CDCl_{3}.

Partial data for the minor components were determined from the mixture. ${ }^{1} \mathrm{H}$ NMR (isomer of 33 b) 5.85 (ddt, $1, J=4.7,10.4$, 1.6), 5.78 (br d, $1, J=10.4$), 4.88-4.82 (m, 1), 3.68 (s, 3); (isomer of 35 b) 5.29 (br s, 1), 5.12 (dd, $1, J=1.5,3.8$), 4.88-4.77 (m, 1), 3.74 (s, 3); (isomer of 33b) 5.43 (br s, 1), 5.29 (br s, 1), 4.88-4.77 (m, 1), 3.73 (s, 3); (35b) 5.30 (br s, 1), 5.13 (br s, 1), 4.38 (br s, 1), 3.76 (s, 3), 3.57 (br d, $1, J=18.3$), 3.38 (dt, $1, J=2.9,9.2$); (isomer of 32b) 6.22 (dt, $1, J=9.6,1.9$), 5.77 ($\mathrm{dt}, 1, J=9.6,3.6$), 4.60 (dd, $1, J=1.9,5.8$), 3.66 (s, 3); (isomer of 32b) 6.06 (br ddd, $1, J=$ $2.4,5.3,10.1$), 5.89 (br dt, $1, J=10.1,4.3$), 4.76-4.73 (m, 1), 3.72 ($\mathrm{s}, \mathrm{3}$).

Hydrogenation of $\mathbf{3 2 b}$ and 33 b . A solution of $\mathbf{3 2 b}$ and 33 b ($0.025 \mathrm{~g}, 0.15 \mathrm{mmol}$ and $5 \% \mathrm{Rh}$ on carbon (approximately 0.02 g) in ether (5 mL) was stirred under a hydrogen atmosphere for 2 h . Filtration and removal of the solvent in vacuo gave 0.023 g of an inseparable $8: 1$ mixture of 36 b and the deschloro compound: ${ }^{1} \mathrm{H}$ NMR 4.57 (ddd, $1, J=5.3,10.1,10.1$), 3.70 (s, 3), $2.61-2.48$ (m, 1), 2.40-2.09 (m, 5), 1.87-1.78 (m, 2), 1.59-1.50 (m, 2), 1.30 (ddd, $1, J=4.8,10.1,14.4$); ${ }^{13} \mathrm{C}$ NMR $168.8,58.6$ (CH), $54.1(\mathrm{CH}), 52.6\left(\mathrm{CH}_{3}\right), 37.4\left(\mathrm{CH}_{2}\right), 36.2\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 23.1$ $\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2}\right), 1 \mathrm{C}$ not observed.

Methyl 8-chloro-3-oxo-2-(2-propenyl)-7-octenoate (44E and $44 Z$) was prepared as previously described ${ }^{3 i}$ from LDA (4 mmol), methyl 2-allylacetoacetate ($312 \mathrm{mg}, 2 \mathrm{mmol}$), DMPU (0.47 mL , 4 mmol), and 4-bromo-1-chloro-1-butene ${ }^{6}(E / Z(2: 1), 339 \mathrm{mg}, 2$ mmol) in 8 mL of THF. The reaction gave 490 mg of crude product. Flash chromatography on silica gel ($25: 1$ hexane-EtOAc) gave $196.0 \mathrm{mg}(40 \%)$ of a $2: 1$ mixture of $44 E$ and $44 Z$: ${ }^{1} \mathrm{H}$ NMR (44E) 5.96 (br d, $1, J=13.2$), 5.85 (dt, $1, J=13.2,6.8$), 5.72 (m, 1), 5.10 (br d, 1, $J=16.5$), 5.05 (br d, $1, J=9.5$), 3.73 (s, 3), 3.54 (t, 1, $J=7.3$), 2.20-2.70 (m, 6), 1.72 (m, 2); (44Z) 6.03 (dt, $1, J$ $=7.0,1.2), 5.75(\mathrm{dt}, 1, J=7.0,7.0), 5.70(\mathrm{~m}, \mathrm{l}), 5.10(\mathrm{br} \mathrm{d}, 1, J$ $=16.5$), $5.05(\mathrm{br} \mathrm{d}, 1, J=9.5), 3.73(\mathrm{~s}, 3), 3.55(\mathrm{t}, 1, J=7.3)$, $2.21-2.77$ (m, 6), $2.06(\mathrm{~m}, 2) ;{ }^{13} \mathrm{C}$ NMR (44E) 203.9, 169.6, 134.1, 132.8, 117.7, 117.52, 58.26, 52.38, 41.0, 32.2, 29.8, 22.3; (44Z) 204.1, 169.7, 134.2, 132.8, 117.6, 117.48, 58.31, 52.44, 41.1, 32.1, 29.8, 23.3; IR (neat) 1745, 1715. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{ClO}_{3}: \mathrm{C}, 58.90 ; \mathrm{H}$, 7.00. Found: C, 59.09; H, 7.09.

Oxidative Cyclization of $44 E$ and $44 Z$. To a solution of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(143 \mathrm{mg}, 0.53 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAC})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(53 \mathrm{mg}, 0.265$ $\mathrm{mmol})$ in 4 mL of glacial acetic acid was added $44 E$ and $44 Z$ (2:1, $65.0 \mathrm{mg}, 0.265 \mathrm{mmol}$). The reaction was stirred at $25^{\circ} \mathrm{C}$ for 12 h. Normal workup gave 65.0 mg of a $4: 1: 1: 2.5$ mixture of 48,49 , 50, and 46. Flash chromatography of 60.0 mg on silica gel ($50: 1$ hexane-EtOAc) gave 4.7 mg of a $4: 2: 1$ mixture of $48(4.5 \%), 49$ (2.2%), and $50(1.1 \%$) followed by 4.4 mg of a $5: 2: 1: 1$ mixture of $48(4.1 \%), 49(1.6 \%), 50(0.8 \%)$, and $46(0.8 \%), 4.9 \mathrm{mg}$ of a 6:3:2:2.5 mixture of 48 (3.6%), 49 (1.8%), 50 (1.2%), and 46 (1.5%), 6.4 mg of a $2.5: 1: 1: 1$ mixture of $48(4.8 \%), 49(1.9 \%), 50(1.9 \%)$, and 46 (1.9%), 7.7 mg of a $4: 1: 2$ mixture of 48 (7.9%), $50(2.0 \%)$, and $46(4.0 \%)$, and 8.9 mg of a $3: 1: 8$ mixture of $48(3.7 \%), 50$ (1.2%), and 46 (9.9%): (first three column fractions) IR (neat) 1720 (br). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{3}: \mathrm{C}, 59.39 ; \mathrm{H}, 6.23$. Found: C, 59.30; H, 6.30.
The data for 46 were determined from the mixture: ${ }^{1} \mathrm{H}$ NMR 5.34 (dt, 1, $J=2.4,2.4$), 5.21 ($\mathrm{dt}, 1, J=2.4,2.4$), 4.25 (ddt, $1, J$ $=10.7,1.8,2.4), 3.75(\mathrm{~s}, 3), 3.39(\mathrm{br} \mathrm{d}, 1, J=17.1), 3.09(\mathrm{~m}, 1)$, 2.71 (br d, $1, J=17.1$), $2.45-2.53(\mathrm{~m}, 2), 1.90-2.20(\mathrm{~m}, 4) ;{ }^{13} \mathrm{C}$ NMR
$205.1,171.1,145.8,112.3,61.3,60.1,54.6,53.0,40.0,35.3,22.6$, 22.5.

The data for 48 were determined from the mixture: ${ }^{1} \mathrm{H}$ NMR 5.42 (br s, 1), 5.28 (br s, 1), 5.04 (br d, 1, $J=10.8$), 3.72 (s, 3), 3.06 (br d, 1, $J=17.4$), 2.58 (br d, 1, $J=17.4$), 2.47 (m, 2), 2.12 (m, 2), 1.92 ($\mathrm{m}, 2$), $1.70(\mathrm{~m}, 1) ;{ }^{13} \mathrm{C}$ NMR 203.6, 170.9, 146.3, 113.6, 64.0, 61.1, 58.9, 52.6, 39.7, 35.3, 26.2, 22.5.

The data for 49 were determined from the mixture: ${ }^{1} \mathrm{H}$ NMR 6.12 (br dt, $1, J=9.5,2.2$), 5.76 (ddd, $1, J=3.3,4.0,9.6$), 4.85 (ddd, $1, J=11.9,6.6,8.7$), 3.71 (s,3), 2.97 (dddd, $1, J=2.0,4.0$, $6.6,18.7$), 1.65-2.30 (m, 8); ${ }^{13} \mathrm{C}$ NMR 130.4, 123.3, 55.4, $53.0,51.4$, 38.5, 37.4, 22.7, 22.6; 3 C not observed.

The data for 50 was determined from the mixture: ${ }^{1} \mathrm{H}$ NMR 5.81 (ddt, 1, $J=4.7,9.8,1.6$), 5.77 (br d, 1, $J=9.9$), 4.85 (br d, $1, J=10.0$), 3.69 (s, 3), 2.81 (br dd, $1, J=18.3,4.7$), $1.60-2.40$ (m, 8); ${ }^{13}$ C NMR 130.2, 127.8, 58.2, 52.7, $51.1,36.8,30.5,23.1,22.4 ;$ 3 C not observed.

Ethyl 2-benzyl-6-chloro-3-oxohept-6-enoate (51b) was prepared as described earlier ${ }^{3 i}$ from diisopropylamine (1.91 mL , 0.014 mol), n-butyllithium (2.6 M in hexanes, $5.45 \mathrm{~mL}, 0.014 \mathrm{~mol}$) ethyl 2-benzylacetoacetate ($1.45 \mathrm{~mL}, 0.007 \mathrm{~mol}$), DMPU (1.65 mL , 0.014 mol), and 2,3-dichloropropane ($0.63 \mathrm{~mL}, 0.007 \mathrm{~mol}$) in THF (20 mL). Purification of 1.877 g of crude product by flash chromatography ($9: 1$ hexane-EtOAc) on silica gel gave 0.706 g (35%) of 51 b : ${ }^{1} \mathrm{H}$ NMR $7.31-7.14$ (m, 5), 5.11 (br s, 2), 4.15 (q , $2, J=7.0$), $3.80(\mathrm{t}, 1, J=7.8$), 3.17 ($\mathrm{d}, 2, J=7.8$), 2.92-2.78 (m, 1), 2.64-2.50 (m, 3), $1.21(\mathrm{t}, 3, J=7.0) ;{ }^{13} \mathrm{C}$ NMR 202.9, 168.8, $140.8,138.0,128.7$ (2), 128.6 (2), 126.7, 113.2, 61.6, 60.6, 40.4, 33.9, 32.8, 14.0; IR (neat) 1742, 1711, 1633, 1599, 1580, 1490. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{ClO}_{3}: \mathrm{C}, 65.19 ; \mathrm{H}, 6.50$. Found: $\mathrm{C}, 64.94 ; \mathrm{H}, 6.33$.

Preparation of Ethyl 6,7-Benzo-5-chloro-2-oxobicyclo-[3.3.1]nonane-1-carboxylate (52b). To a stirred solution of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(473 \mathrm{mg}, 1.76 \mathrm{mmol})$ in 8 mL of glacial acetic acid was added β-keto ester 51 b ($260 \mathrm{mg}, 0.88 \mathrm{mmol}$) in 3 mL of glacial acetic acid. The reaction mixture was stirred at rt for 20 h and worked up to give 275 mg of crude product. Purification of 228 mg by flash chromatography ($9: 1$ hexane-EtOAc) on silica gel gave 135 mg (64%) of $52 \mathrm{~b}:{ }^{1} \mathrm{H}$ NMR 7.82 (dd, $1, J=1.8,7.8$), $7.36-7.26$ (m, 2), 7.16 (br d, $1, J=7.0$), 4.19 ($\mathrm{q}, 2, J=7.3$), 3.48 (d, $1, J=18.3$), 3.15 (dd, $1, J=2.0,18.3$), 3.13 (dd, $1, J=2.0$, 12.5), 2.68 (ddd, $1, J=5.5,13.0,13.8$), 2.66 (dd, $1, J=3.7,12.5$), 2.48-2.28 (m, 2), 2.00 (ddd, $1, J=6.9,13.1,16.4$), 1.23 (t, $3, J=$ 7.3); ${ }^{13} \mathrm{C}$ NMR 203.1, 170.6, 137.6, 133.0, 128.5, 128.3, 127.5, 127.2, 67.4, 61.7, 58.6, 44.5, 44.1, 38.0, 35.5, 14.1; IR (neat) 1735, 1715. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClO}_{3}$: $\mathrm{C}, 65.64 ; \mathrm{H}, 5.85$. Found: C, 65.60 ; H, 5.64.

Ethyl 2-benzyl-7-chloro-3-oxohept-7-enoate (55bZ and $55 \mathrm{~b} E$) was prepared as described earlier ${ }^{3 i}$ from diisopropylamine ($1.91 \mathrm{~mL}, 0.014 \mathrm{~mol}$), n-butyllithium (2.6 M in hexanes, 5.45 mL , 0.014 mol), ethyl 2-benzylacetoacetate ($1.45 \mathrm{~mL}, 0.007 \mathrm{~mol}$), DMPU ($1.65 \mathrm{~mL}, 0.014 \mathrm{~mol}$), and 1,3-dichloropropene (a $2: 1$ mixture of Z and E isomers, $0.756 \mathrm{~g}, 0.007 \mathrm{~mol}$) in THF (20 mL). Purification of 1.983 g of the 2.011 g of crude product by flash chromatography ($9: 1$ hexane-EtOAc) on silica gel gave 0.793 g (40\%) of a $2: 1$ mixture of 55 bZ and $55 \mathrm{~b} E$: ${ }^{1} \mathrm{H}$ NMR (Z) $7.31-7.14$ (m, 5), 5.93 (dt, $1, J=13.2,1.7$), $5.74(\mathrm{dt}, 1, J=13.2,7.5$), 4.40 (q, 2, $J=7.3$), 3.77 ($\mathrm{t}, 1, J=7.4$), 3.16 (d, $2, J=7.4$), 2.48-2.36 (m, 2), 2.36-2.22 (m, 2), 1.21 (t, 3, $J=7.3$); (E) 7.31-7.14 (m, 5), 5.99 (dt, $1, J=7.7,1.4), 5.67(\mathrm{dt}, 1, J=7.7,7.5), 4.39(\mathrm{q}, 2, J=$ 7.3), 3.78 (t, 1, $J=7.4$), 3.16 (d, 2, $J=7.4,2.76-2.60(\mathrm{~m}, 2)$, 2.48-2.36 (m, 2), $1.20\left(\mathrm{t}, 3, J=7.3\right.$); ${ }^{13} \mathrm{C}$ NMR (Z) 203.3, 168.8, 137.9, 131.6, 128.8 (2), 128.5 (2), 126.7, 118.3, 61.5, 60.4, 41.8, 34.0, 20.9, 14.0; (E) 203.6, 168.9, 138.0, 129.6, 128.7 (2), 128.5 (2), 126.6, 119.2, 61.5, 60.3, 41.2, 34.0, 24.4, 14.0; IR (neat) 1742, 1715, 1632, 1606, 1498. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{ClO}_{3}: \mathrm{C}, 65.19 ; \mathrm{H}, 6.50$. Found: C, 65.01; H, 6.45.

Oxidative free-radical cyclization of 55 b as described previously with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(570 \mathrm{mg}, 2.13 \mathrm{mmol})$ and 55 bZ and $55 \mathrm{~b} \boldsymbol{E}$ (313 mg of a $2: 1$ mixture, 1.06 mmol) in glacial acetic acid (13 mL) for 20 h at rt gave 318 mg of crude product. Flash chromatography of 278 mg ($9: 1$ hexane-EtOAc) on silica gel gave $184 \mathrm{mg}(66 \%)$ of a $4.9: 1$ mixture of 57 b and one diastereomer of 58 b , followed by $15.3 \mathrm{mg}(6 \%)$ of the other diastereomer of 58 b .

The data for 57 b were determined from the mixture: ${ }^{1} \mathrm{H}$ NMR 7.65 (dd, $1, J=2.5,7.2$), 7.29-7.13 (m, 3), 5.40 (d, 1, $J=10.3$), 4.04 ($\mathrm{q}, 2, J=7.0$), 3.45 ($\mathrm{d}, 1, J=16.9$), 2.88 (d, $1, J=16.9$), 2.75
(ddd, $1, J=7.3,10.4,16.2$), $2.57-2.24(\mathrm{~m}, 4), 1.10(\mathrm{t}, 3, J=7.0)$; ${ }^{13} \mathrm{C}$ NMR 211.2, 168.0, 136.1, 134.7, 129.5, 129.3, 128.2, 126.7, 61.7 $\left(\mathrm{CH}_{2}\right), 60.8(\mathrm{C}), 60.6(\mathrm{CH}), 51.9(\mathrm{CH}), 37.2\left(\mathrm{CH}_{2}\right), 34.8\left(\mathrm{CH}_{2}\right), 23.7$ $\left(\mathrm{CH}_{2}\right), 13.8\left(\mathrm{CH}_{3}\right)$; IR (neat) $3070,1755,1725,1600,1572$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClO}_{3}$: $\mathrm{C}, 65.64 ; \mathrm{H}, 5.85$. Found: $\mathrm{C}, 65.75 ; \mathrm{H}, 5.72$.

The data for the less polar diastereomer of 58 b were determined from the mixture: ${ }^{1} \mathrm{H}$ NMR 7.45 (dd, $1, J=4.2,5.7$), 7.29-7.12 ($\mathrm{m}, 3$), 5.25 (d, $1, J=4.8$), 4.17 (q, 2, $J=7.0$), $3.46-3.38$ ($\mathrm{m}, 1$, H_{5}), 3.32 (d, $1, J=15.9$), $3.22(\mathrm{~d}, 1, J=15.9), 2.57-2.24(\mathrm{~m}, 4)$, 1.26 (t, $3, J=7.0$); ${ }^{13}$ C NMR 135.4, 128.7, 128.3, 127.0, $126.3,62.0$ $(\mathrm{CH}), 60.6\left(\mathrm{CH}_{2}\right), 47.4(\mathrm{CH}), 37.4\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right)$, $14.0\left(\mathrm{CH}_{3}\right), 4 \mathrm{C}$ not observed.

The data for the less polar diastereomer of 58b: ${ }^{1} \mathrm{H}$ NMR 7.32 (m, 4), 5.04 (d, $1, J=2.9$), 4.23 (q, 2, $J=7.1$), 3.74 (ddd, $1, J=$ $2.9,8.6,9.0, \mathrm{H}_{5}$), 3.69 (d, $1, J=15.8$), 3.18 (d, $1, J=15.8$), 2.52 (ddd, $1, J=9.6,11.2,17.4, H_{3}$), 2.28 (dddd, $1, J=3.4,8.6,9.6$, $12.7, \mathrm{H}_{4}$), 2.08 (ddd, $1, J=3.4,8.6,17.4, \mathrm{H}_{3}$), 1.27 ($\mathrm{t}, 3, J=7.1$), 1.19 (dddd, $1, J=8.6,9.0,11.2,12.7, \mathrm{H}_{4}$); ${ }^{13} \mathrm{C}$ NMR 213.1 (CO), $170.9\left(\mathrm{CO}_{2}\right), 134.7$ (C), 134.5 (C), 129.4 (CH), $129.0(\mathrm{CH}), 128.2$ $(\mathrm{CH}), 127.1(\mathrm{CH}), 62.1\left(\mathrm{CH}_{2}\right), 60.4(\mathrm{CH}), 48.9(\mathrm{CH}), 37.8\left(\mathrm{CH}_{2}\right)$, $30.8\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$ IR (neat) $1750,1717$.

Hydrogenation of 57 b and the Less Polar Diastereomer of 58b. A mixture of $10 \% \mathrm{Pd}$ on carbon (approximately 0.02 g) in ether (5 mL) was charged with hydrogen for 5 min , and 57b and 58 b (0.029 g of a $4.9: 1$ mixture) were added as a solution in ether (1 mL). The system was charged with hydrogen for an additional 2 min , fitted with a hydrogen reservoir, and stirred for 2 h . The mixture was filtered through Celite and the solvent removed in vacuo to give 0.031 g of a 4.9:1 mixture of 53 a and 54a.

The data for 53a were determined from the mixture: ${ }^{1} \mathrm{H}$ NMR $7.22-7.08$ (m, 4), 4.07 (q, 2, $J=7.0$), 3.42 (d, 1, $J=16.5$), 3.08-2.88 (m, 2), 2.86-2.61 (m, 2), 2.49-2.15 (m, 4), 1.12 (t, 3, $J=7.0$); ${ }^{13} \mathrm{C}$ NMR 213.5, 169.1, 135.2, 134.9, 129.7, 129.2, 128.2, 125.7, 61.1 $\left(\mathrm{CH}_{2}\right), 44.4(\mathrm{CH}), 37.9\left(\mathrm{CH}_{2}\right), 34.4\left(\mathrm{CH}_{2}\right), 32.4\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right)$, $14.1\left(\mathrm{CH}_{3}\right)$; IR (neat) $1755,1730$.

Hydrogenation of the more polar diastereomer 58b $(0.005$ g) was carried out analogously with $10 \% \mathrm{Pd}$ on carbon (approx. 0.02 g) in ether (5 mL) to give a quantitative yield of 54 a : ${ }^{1} \mathrm{H}$ NMR 7.12 ($\mathrm{br} \mathrm{s}, 4$), 4.16 ($\mathrm{q}, 2, J=7.7$), $3.21-3.10\left(\mathrm{~m}, 1, \mathrm{H}_{5}\right.$), 3.19 (d, $1, J=14.9$), 3.00 (d, $1, J=14.9$), 2.94 (dd, $1, J=5.8,14.9$), 2.63 (dd, $1, J=4.8,14.9$), 2.47 (dt, $1, J=17.4,9.1$), 2.29-2.18 (m, 1), 2.06 (ddd, $1, J=4.8,8.7,17.4$), 1.43 (dddd, $1, J=7.2,9,9$, 13), 1.24 ($\mathrm{t}, 3, J=7.7$); IR (neat) $1755,1735$.

Ethyl 2-benzyl-8-chloro-3-ox0-7-octenoate (59E and 59Z) was prepared as previously described ${ }^{3 i}$ from LDA (3 mmol), ethyl 2-benzylacetoacetate ($0.227 \mathrm{~mL}, 1.5 \mathrm{mmol}$), DMPU ($0.35 \mathrm{~mL}, 3$ mmol), and 4-bromo-1-chloro-1-butene ${ }^{6}$ ($E / Z(2: 1) ; 255 \mathrm{mg}, 1.5$ mmol) in 4 mL of THF. Flash chromatography of 456 mg of crude product on silica gel ($20: 1$ hexane-EtOAc) gave 190.0 mg (41%) of a 2:1 mixture of $59 E$ and $59 Z$: ${ }^{1} \mathrm{H}$ NMR (E) 7.20 (m, 5), 5.87 (br d, $1, J=13.5$), 5.77 (dt, $1, J=13.5,6.8$), $4.15(\mathrm{q}, 2, J=7.1)$, 3.78 (t, $1, J=7.7$), 3.16 (d, $2, J=7.7$), $2.54(\mathrm{dt}, 1, J=17.7,7.0$), $2.30(\mathrm{dt}, 1, J=17.7,7.0), 1.97(\mathrm{dt}, 2, J=6.8,7.3), 1.61(\mathrm{~m}, 2)$, $1.21(\mathrm{t}, 3, J=7.1)$; (Z) $7.20(\mathrm{~m}, 5), 6.03(\mathrm{dt}, 1, J=7.1,1.4), 5.65$ (dt, $1, J=7.1,7.0$), $4.16(\mathrm{q}, 2, J=7.1), 3.77(\mathrm{t}, 1, J=7.7$), 3.16 (d, 2, $J=7.7$), $2.65(\mathrm{dt}, 1, J=17.7,7.0), 2.37(\mathrm{dt}, 1, J=17.7,7.0)$, 2.15 (ddt, 2, $J=1.4,7.0,7.3$), 1.62 (m, 2), $1.21(\mathrm{t}, 3, J=7.1)$; ${ }^{13} \mathrm{C}$ NMR (E) 204.2, 169.0, 138.1, $132.8,128.8,128.5,126.7,117.7,61.5$, $60.5,41.7,34.1,29.8,22.2,14.0$; (Z) 203.3, 168.8, 137.9, 130.6, 128.8, 128.5, 126.7, 118.4, 61.5, 60.6, 41.8, 34.1, 29.8, 24.5, 14.0; IR (neat) 1745, 1715, 795, 695. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{ClO}_{3}: \mathrm{C}, 66.12 ; \mathrm{H}$, 6.85. Found: C, 66.21; H, 6.74.

Oxidative Cyclization of $59 E$ and $59 Z$. To a solution of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(91 \mathrm{mg}, 0.336 \mathrm{mmol})$ in 4 mL of glacial acetic acid was added $59 E$ and $59 Z$ ($2: 1,52.0 \mathrm{mg}, 0.168 \mathrm{mmol}$). The reaction was stirred for 28 h at $35^{\circ} \mathrm{C}$ and worked up to give 55.0 mg of crude product. Flash chromatography of 44.8 mg on silica $\mathrm{gel}(30: 1$ hexane-EtOAc) gave $6.6 \mathrm{mg}(15 \%)$ of 65 , followed by $28.0 \mathrm{mg}(54 \%)$ of 64 . Traces of $60-63$ were observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product.

The data for 64: ${ }^{1} \mathrm{H}$ NMR 7.13 ($\mathrm{m}, 4$), 6.67 ($\mathrm{d}, 1, J=8.8$), 4.09 (q, 2, $J=7.1$), 3.27 (d, $1, J=17.3$), 3.21 (d, $1, J=17.3$), 2.56 (m , 2), 2.16 (s, 3), $2.04-2.19(\mathrm{~m}, 3), 1.89(\mathrm{~m}, 1), 1.70(\mathrm{~m}, 1), 1.06(\mathrm{t}$, $3, J=7.1$); ${ }^{13} \mathrm{C}$ NMR 205.2, 171.3, 169.3, 134.2, 133.6, 128.8, 127.9, $127.7,126.9,73.6,61.82,61.76,48.7,40.0,34.9,25.8,25.1,21.5$,
14.0; IR (neat) 1730 (br). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5}$: C, 69.07; H, 6.71. Found: C, 69.58; H, 6.29.
The data for 65: ${ }^{1} \mathrm{H}$ NMR $7.00-7.20$ ($\mathrm{m}, 4$), 6.43 (br s, 1), 4.06 (q, 2, $J=7.1$), 3.45 (d, $1, J=17.0$), 3.16 (d, $1, J=17.0$), 2.81 (m, 2), 2.62 (m, 2), $2.12(\mathrm{~m}, 1), 1.70(\mathrm{~m}, 1), 1.13(\mathrm{t}, 3, J=7.1)$; ${ }^{13} \mathrm{C}$ NMR 205.0, 171.6, 137.2, 132.7, 132.3, 127.6, 127.3, 126.7, 125.9, 125.8, 61.8, 61.2, 40.2, 33.4, 31.8, 23.6, 13.9; IR (neat) 1760, 1720, 750; $\mathrm{MS}(m / z) 270\left(17.2, \mathrm{M}^{+}\right), 197$ ($\left.100, \mathrm{M}-\mathrm{CO}_{2} \mathrm{Et}\right)$.

Reaction of $59 E$ and $59 Z(2: 1,92.5 \mathrm{mg}, 0.3 \mathrm{mmol})$ with Mn $(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(160 \mathrm{mg}, 0.6 \mathrm{mmol})$ at for 17 h at $25^{\circ} \mathrm{C}$ followed by normal workup gave 95.0 mg of crude product that contained 63, 60, 65, 61, 62, 64 in a 7:15:15:3:1:30 ratio as determined by ${ }^{1} \mathrm{H}$ NMR. Flash chromatography ($20: 1$ hexane-EtOAc) of 70.0 mg gave 3.6 mg of a $4: 1$ mixture of $63(4.0 \%)$ and $60(1.0 \%), 4.1$ mg of a $1: 2$ mixture of $63(2 \%)$ and $60(4 \%)$ and a trace of 65 , 14.4 mg of a $4: 3: 1$ mixture of $60(11.2 \%), 65(9 \%)$, and $61(2.8 \%)$, and 2.3 mg of a $1: 1: 1$ mixture of $65(1 \%), 61(1 \%)$, and $62(1 \%)$, followed by $28.1 \mathrm{mg}(32 \%)$ of 64 .

The data for 60 were determined from the mixture: ${ }^{1} \mathrm{H}$ NMR 7.64 (dd, $1, J=2.4,6.6$), $7.15-7.28$ (m, 3), 5.41 (d, $1, J=10.3$), 4.06 (q, $2, J=7.1$), 3.46 (d, $1, J=16.4$), 2.91 (d, $1, J=16.4$), 2.76 (m, 1), 2.25-2.55 (m, 6), 1.12 (t, 3, $J=7.1$).

Partial spectral data for 61 were determined from the mixture: ${ }^{1} \mathrm{H}$ NMR 7.45 (dd, $1, J=4.1,5.6$), $7.12-7.28$ (m, 3), 5.25 (d, 1 , $J=4.6$), 4.18 ($\mathrm{q}, 2, J=7.1$), $3.28(\mathrm{~d}, 1, J=15.8$), $1.27(\mathrm{t}, 3, J=$ 7.1).

Partial spectral data for 62 were determined from the mixture: ${ }^{1} \mathrm{H}$ NMR 7.51 (dd, $1, J=4.0,5.8$), $7.13-7.27$ (m, 3), 5.14 (d, 1, $J=4.5), 4.22(\mathrm{q}, 2, J=7.1), 3.42(\mathrm{~d}, 1, J=15.7), 1.28(\mathrm{t}, 3, J$ = 7.1).

The data for 63 were determined from the mixture: ${ }^{1} \mathrm{H}$ NMR 7.53 (d, 1, $J=7.5$), 7.15-7.28 (m, 2), 7.09 (d, 1, $J=7.5$), 5.78 (d, $1, J=9.5$), 4.03 (q, 2, $J=7.1$), 3.22 (br s, 2), $1.70-2.55(\mathrm{~m}, 7)$, 1.06 (t, 3, $J=7.1$).

Oxidative Addition of Ethyl 2-Methylacetoacetate (66) to 2-Bromo-1-propene (67). Reaction of 66 ($145 \mathrm{mg}, 1 \mathrm{mmol}$), 67 ($240 \mathrm{mg}, 2 \mathrm{mmol}$), $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(545 \mathrm{mg}, 2 \mathrm{mmol}$), and $\mathrm{Cu}-$ $(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(200 \mathrm{mg}, 1 \mathrm{mmol})$ in 10 mL of glacial acetic acid for 48 h at $40^{\circ} \mathrm{C}$ followed by normal workup gave 277.1 mg of a mixture of 72 (24%), $68 E$ and $68 Z(1: 3,33 \%), 69(16 \%), 71$ (8%), a trace of 70, and a trace of 73 and 74 by ${ }^{1} \mathrm{H}$ NMR and GC. Flash chromatography ($25: 1$ hexane/EtOAc) of 60.0 mg gave 11.1 mg (23.8%) of pure 72 followed by $9.3 \mathrm{mg}(16.3 \%)$ of a $1: 1$ mixture of $68 E$ and $68 Z, 18.7 \mathrm{mg}(32.8 \%)$ of a $1: 1$ mixture of $68 Z$ and 69 , and $3.6 \mathrm{mg}(8.3 \%)$ of 71 .

The data for $68 E$ and $68 Z$: ($68 E)^{1}{ }^{1} H$ NMR 6.58 (d, $1, J=1.3$), 4.23 ($\mathrm{q}, 2, J=7.1$), 2.17 (s, 3), 2.14 (d, $3, J=1.3$), $1.51(\mathrm{~s}, 3), 1.28$ ($\mathrm{t}, 3, J=7.1$); ${ }^{13} \mathrm{C}$ NMR 171.0, 129.7 (CH), 124.8 (C), 62.12, 62.06, 26.4, 24.7, 20.7, 13.9, $\mathrm{C}=0$ not observed; $t_{\mathrm{R}}=6.80 ;(68 Z)^{1} \mathrm{H}$ NMR 6.61 (d, $1, J=1.3$), $4.21(\mathrm{q}, 2, J=7.1), 2.37(\mathrm{~d}, 3, J=1.3), 2.20$ (s, 3), 1.59 (s, 3), 1.28 ($\mathrm{t}, 3, J=7.1$); ${ }^{13} \mathrm{C}$ NMR 201.6, 171.2, 127.6 (CH), 124.1 (C), 62.12, 62.08, 30.3, 26.6, 19.5, 13.9; IR (neat) 2980, $2940,2870,1740,1720,1645,1445,1375,1355,1240,1015 ; t_{\mathrm{R}}=$ 6.69. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{BrO}_{3}$: $\mathrm{C}, 45.65 ; \mathrm{H}, 5.78$. Found: C , $45.77 ; \mathrm{H}, 5.66$. The stereochemistry is assigned based on the shift of the methyl carbon at $\delta 24.7$ in $68 E$ and $\delta 30.3$ in $68 Z Z^{23}$
The data for 69 were determined from the mixture: ${ }^{1} \mathrm{H}$ NMR 5.64 (dt, 1, $J=1.6,0.8$), 5.56 (d, 1, $J=1.6$), 4.23 (q, $3, J=7.1$), 3.17 (d, $1, J=15.2,0.8$), 3.03 (d, 1, $J=15.2,0.8$), 2.20 (s, 3), 1.45 (s, 3), 1.28 (t, 3, $J=7.1$); ${ }^{13} \mathrm{C}$ NMR 204.0, 171.8, 127.9 (C), 121.5 $(\mathrm{CH}), 61.8,59.0(\mathrm{C}), 45.2,26.0,18.4,13.9 ; t_{\mathrm{R}}=6.76$.

The data for 71: ${ }^{1} \mathrm{H}$ NMR $4.21(\mathrm{q}, 2, J=7.1), 3.15(\mathrm{~d}, 1, J=$ 18.2), 3.05 (d, $1, J=18.2$), 2.28 ($\mathrm{s}, 3$), 2.17 ($\mathrm{s}, 3$), $1.50(\mathrm{~s}, 3$), 1.28 ($\mathrm{t}, 3, J=7.1$); ${ }^{13} \mathrm{C}$ NMR 205.6, 203.4, 172.1, 61.6, 57.2, 48.9, 30.2, $26.4,20.6,13.9$; IR (neat) $2990,2940,1740,1730,1720,1455,1425$, $1365 ; t_{\mathrm{R}}=5.18$. The data are identical to those previously reported. ${ }^{24}$

The data for 72: ${ }^{1} \mathrm{H}$ NMR $4.28(\mathrm{t}, 2, J=7.1), 2.44(\mathrm{~s}, 3), 1.98$ ($\mathrm{s}, 3$), 1.33 ($\mathrm{t}, J=7.1$); ${ }^{13} \mathrm{C}$ NMR 198.1, 169.8, 63.1, 62.6, 25.7, 25.2, 13.8; IR (neat) 2980, 2930, 1740, 1720, 1440, 1370, 1350; $t_{\mathrm{R}}=3.21$. The data are identical to those previously reported. ${ }^{25}$

[^8]The same reaction carried out without 1.0 equiv of $\mathrm{Cu}(\mathrm{O}$ $\mathrm{Ac})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ gave 17.3% of $\mathbf{7 2}$ followed by 33.6% of a $1: 1$ mixture of 69 and $70,5 \%$ of $76,5 \%$ of 77 , and 15.4% of 71 .

The data for 70 were determined from the mixture: ${ }^{1} \mathrm{H}$ NMR 4.25 (q, 3, $J=7.1$), 3.37 (d, $1, J=15.9$), $3.27(\mathrm{~d}, 1, J=15.9$), 2.60 (s, 3), 2.21 (s, 3), 1.70 (s, 3), 1.30 (t, 3, $J=7.1$); ${ }^{13} \mathrm{C}$ NMR 205.2, 171.1, 64.1, 62.1, 61.0, 53.7, 43.6, 25.5, 19.0, 14.0; $t_{\mathrm{R}}=9.54$.

Reaction of Ethyl 2-Methylacetoacetate (66) with Mn(0$\mathrm{Ac})_{\mathbf{3}} \cdot \mathbf{2} \mathrm{H}_{2} \mathrm{O}$ and LiBr . A solution of $\mathbf{6 6}(175.0 \mathrm{mg}, 1.2 \mathrm{mmol})$, $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(545 \mathrm{mg}, 2 \mathrm{mmol})$, and $\mathrm{LiBr}(260 \mathrm{mg}, 3 \mathrm{mmol})$ in 10 mL of glacial acetic acid was stirred for 17 h at $40^{\circ} \mathrm{C}$. Normal workup gave 269.0 mg (100%) of pure 72 as determined by GC and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR.
The same reaction carried out with 2.0 equiv of 67 gave an $86: 3$ mixture of $\mathbf{6 7}$ and 70 as determined by GC analysis.

Oxidative Addition of Ethyl 2-Methylacetoacetate (66) to 1 -Hexene (75). Reaction of β-keto ester 76 ($145 \mathrm{mg}, 1 \mathrm{mmol}$), 75 ($170 \mathrm{mg}, 2 \mathrm{mmol}$), $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(545 \mathrm{mg}, 2 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(200 \mathrm{mg}, 1 \mathrm{mmol})$ in 10 mL of acetic acid for 48 h at $40^{\circ} \mathrm{C}$ followed by normal workup afforded 238.3 mg of a $2: 1$ mixture of 76 and 77 and a mixture of 73 and 74 . Flash chromatography on silica gel ($20: 1$ hexane-EtOAc) of 56.0 mg gave $43.4 \mathrm{mg}(82 \%)$ of a $2: 1$ mixture of 76 and 77 , followed by 2.6 mg (7.9%) of 73 and 2.3 mg (6.8\%) of 74.
The data for 76 and 77 : ${ }^{1} \mathrm{H}$ NMR (76) 5.97 (dt, $1, J=15.9$, 1.4), 5.55 (dt, $1, J=15.9,6.8$), 4.23 (q, 2, $J=7.1$), 2.15 (s, 3), 2.09 (ddt, $2, J=1.4,6.8,6.8$), 1.45 (s, 3), 1.27 (t, $3, J=7.1$), $1.25-1.35$ ($\mathrm{m}, 4$), $0.89(\mathrm{t}, 3, J=7.0$); (77) 5.50 (dtt, $1, J=15.0,7.0,1.3$), 5.24 (dtt, $1, J=15.0,7.4,1.3$), 4.18 (q, 2, $J=7.1$), 2.60 (ddd, $1, J=$ 7.4, 1.3, 14.2), 2.44 (ddd, $1, J=7.4,1.3,14.2$), 2.14 (s, 3), 1.95 (br $\mathrm{dt}, 2, J=7.0,7.0), 1.33(\mathrm{~m}, 2), 1.31(\mathrm{~s}, 3), 1.26(\mathrm{t}, 3, J=7.1), 0.87$ ($\mathrm{t}, 3, J=7.0$); ${ }^{13} \mathrm{C}$ NMR (76) 203.8, 172.1, 133.3, 127.6, 61.3, 61.1, $32.3,31.0,26.3,22.0,19.6,13.9,13.7 ; t_{\mathrm{R}}=7.73$; (77) 205.2, 172.6, $135.1,123.7,61.5,59.6,38.1,34.5,26.2,22.4,18.8,14.0,13.5$; IR (neat) $960,2930,2870,2860,1745,1715,1460,1370,1355,1240$, 1020,$970 ; t_{\mathrm{R}}=7.73$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}: \mathrm{C}, 68.99 ; \mathrm{H}, 9.80$. Found: C, 69.05; H, 9.92.

The data for 73 and 74 are identical to those previously described: ${ }^{1} \quad t_{\mathrm{R}}=11.66(73) ; t_{\mathrm{R}}=9.97$ and 10.07 (74).
Competition Reactions. Reaction of $66(145 \mathrm{mg}, 1 \mathrm{mmol})$, 75 ($430 \mathrm{mg}, 5 \mathrm{mmol}$), 78 ($430 \mathrm{mg}, 5 \mathrm{mmol}$), $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(540$ $\mathrm{mg}, 2 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(200 \mathrm{mg}, 1 \mathrm{mmol})$ in 10 mL of glacial acetic acid for 48 h at $40^{\circ} \mathrm{C}$ followed by normal workup gave 247.4 mg of crude product. GC analysis of the crude product indicated that $79(75.3 \%),(76+77)(24.4 \%)$, and a trace of 73 , 74, and 80 were present. ${ }^{1} \mathrm{H}$ NMR analysis of the crude product showed that 79 and $(76+77)$ were formed in a 2.3:1 ratio. The data for 79 and 80 are identical to those previously described: ${ }^{1}$ $t_{\mathrm{R}}=5.77,5.91,7.09,7.17,7.38(79) ; t_{\mathrm{R}}=10.26,10.35(80)$.

Reaction of 1 mmol of $66,5 \mathrm{mmol}$ of $67,5 \mathrm{mmol}$ of $75,2 \mathrm{mmol}$
of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, and 1 mmol of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ as described above gave ($\mathbf{7 6}+\mathbf{7 7}$) (46.4%), $(68 E+68 Z+69)(34.2 \%), 72$ (19.4%), and a trace of $71,73,74,70$ as determined by GC. ${ }^{1} \mathrm{H}$ NMR analysis of the crude product showed that $(76+77)$ and $(68 E+68 Z+69)$ were formed in a 1.3:1 ratio.

Reaction of 1 mmol of $66,5 \mathrm{mmol}$ of $67,5 \mathrm{mmol}$ of $78,2 \mathrm{mmol}$ of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, and 1 mmol of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ as described above gave $79(73 \%),(68 E+68 Z+69)(17 \%), 72(7 \%)$, and a trace of 70, 73, 74, 71 as determined by GC. ${ }^{1} \mathrm{H}$ NMR analysis of the crude product showed that 79 and $(68 E+68 Z+69)$ were formed in a $4: 1$ ratio.

Acknowledgment. We are grateful to the National Science Foundation and National Institutes of Health for generous Financial Support.

Registry No. 1a, 112292-93-0; 3a, 141726-23-0; 4b, 141726-24-1; 4с, 141726-25-2; 7, 141726-26-3; 8, 79482-36-3; 9, 141726-27-4; (E)-10, 141726-28-5; (Z)-10, 141726-29-6; 12, 65547-54-8; (Z)-13, 141726-30-9; (E)-13, 141726-31-0; 15, 141726-32-1; 16, 141726-33-2; 17, 141726-34-3; (E)-28a, 141726-35-4; (Z)-28a, 141726-36-5; (Z)-28b, 141726-37-6; (E)-28b, 141726-38-7; 30a, 141726-39-8; 32a, 141726-40-1; 32b (isomer 1), 141726-41-2; 32b (isomer 2), 141726-42-3; 33b (isomer 1), 141726-43-4; 33b (isomer 2), 141726-44-5; 34, 141726-45-6; 35a, 141726-46-7; 35b (isomer 1), 141726-47-8; 35b (isomer 2), 141726-48-9; 36b, 141726-49-0; 36b deschloro derivative, 141726-50-3; (E)-44, 141753-23-3; (Z)-44, 141726-51-4; 46, 141753-24-4; 48, 141726-52-5; 49, 141726-53-6; 50, 141726-54-7; 51b, 141726-55-8; 52b, 141726-56-9; 53a, 112293-00-2; 54a, 112292-99-6; (Z)-55b, 141726-57-0; (E)-55b, 141726-58-1; 57b, 141726-59-2; 58b (isomer 1), 141726-60-5; 58b (isomer 2), 141726-61-6; (E)-59, 141752-92-3; (Z)-59, 141726-62-7; 60, 141726-63-8; 61, 141726-64-9; 62, 141726-65-0; 63, 141726-66-1; 64, 141726-67-2; 65, 141726-68-3; 66, 609-14-3; 67, 557-93-7; (E)-68, 141726-69-4; (Z)-68, 141726-70-7; 69, 141726-71-8; 70, 141726-72-9; 71, 111400-47-6; 72, 32116-05-5; 73, 21954-89-2; 74, 141726-73-0; 75, 592-41-6; 76, 141726-74-1; 77, 141726-75-2; 78, 763-29-1; 79 (isomer 1), 141726-76-3; 79 (isomer 2), 113704-09-9; 80, 141726-77-4; $\mathrm{CH}_{3} \mathrm{COCH}_{2}-\mathrm{Zi}^{+}, 62415-84-3 ; \mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 993-02-2 ; \mathrm{Cu}(\mathrm{O}-$ $\mathrm{Ac})_{2} \mathrm{H}_{2} \mathrm{O}, 142-71-2$; benzoylacetone, $93-91-4 ; 1$-bromo- $3(\mathrm{Z})$-hexene, 5009-31-4; 5-bromo-2-pentyne, 18719-27-2; 4-bromo-1-(tri-methylsilyl)-1-butyne, 69361-41-7; (E)-4-bromo-1-chloro-1-butene, 40529-08-6; (Z)-4-bromo-1-chloro-1-butene, 40529-07-5; 2,4-dimethoxybenzoic acid, 91-52-1; 2,4-dimethoxybenzoyl chloride, 39828-35-8; methyl 2-allylacetoacetate, 3897-04-9; (E)-crotyl bromide, 29576-14-5; (Z)-crotyl bromide, 39616-19-8; allyl bromide, 106-95-6; (Z)-methyl 7-chloro-3-oxohept-6-enoate, 141726-78-5; (E)-methyl 7-chloro-3-oxohept-6-enoate, 141726-79-6; ethyl 2benzylacetoacetate, 620-79-1; 2,3-dichloropropene, 78-88-6; 1,3dichloropropene, 542-75-6.

[^0]: (1) (a) Hart, D. J. Science 1984, 223, 883. (b) Giese, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds; Pergamon Press: Oxford, New York, 1986. (c) Surzur, J.-M. In Reactive Intermediates; Abramovitch, R. A., Ed.; Plenum: New York, 1982; Vol. 2, pp 121-295. (d) Beckwith, A. L. J. Tetrahedron 1981, 37, 3073. (e) Beckwith, A. L. J.; Ingold, K. U. In Rearrangements in Ground and Excited States; de Mayo, P., Ed.; Academic Press: New York, 1980; Vol. 1, pp 162-310. (f) Ramaiah, M. Tetrahedron 1987, 43, 3541. (g) Curran, D. P. Synthesis 1988, 417 and 489.
 (2) For reviews of manganese(III) acetate as an oxidant see: (a) de Klein, W. J. In Organic Synthesis by Oxidation with Metal Compounds; Mijs, W. J., de Jonge, C. R. H., Eds.; Plenum Press: New York, 1986; pp 261-314. (b) Badanyan, Sh. O.; Melikyan, G. G.; Mkrtchyan, D. A. Russ. Chem. Rev. 1989, 58, 286; Uspekhi Khimii 1989, 58, 475. See also references cited in: Breuilles, P.; Uguen, D. Bull. Soc. Chim. Fr. 1988, 705. Heiba, E. I.; Dessau, R. M.; Williams, A. L.; Rodewald, P. G. Org. Synth. 1983, 61, 22.

[^1]: (5) (a) Snider, B. B.; Kirk, T. C. J. Am. Chem. Soc. 1983, 105, 2364. (b) Negishi, E.; Valente, L. F.; Kobayashi, M. J. Am. Chem. Soc. 1980, 102, 3298.
 (6) Hill, E. A. J. Am. Chem. Soc. 1972, 94, 7462. A 2:1 E/Z mixture of 1,3 -dichloropropane isomers gives a 15% overall yield of a $1: 2 Z / E$ mixture of 4-bromo-1-chloro-1-butene isomers. The initial $\mathrm{S}_{\mathrm{N}} 2$ reaction with cyanide proceeds in much higher yield with (E)-1,3-dichloropropane.
 (7) Ahluwalia, V. K.; Kumar, D. Ind. J. Chem. 1977, 15B, 514.
 (8) Seebach, D.; Beck, A. K.; Hoekstra, M. S. Tetrahedron Lett. 1977, 1187. Seebach, D.; Weller, T.; Protschuk, G.; Beck, A. K.; Hoekstra, M. S. Helv. Chim. Acta 1981, 64, 716.
 (9) (a) Hoshino, O.; Hara, H.; Ogawa, M.; Umezawa, B. J. Chem. Soc., Chem. Commun. 1975, 306. (b) Buchan, G. M.; Findlay, J. W. A.; Turner, A. B. J. Chem. Soc., Chem. Commun. 1975, 126.

[^2]: (10) (a) Dewar, M. J. S.; Nakaya, T. J. Am. Chem. Soc. 1968, 90, 7134. (b) Tanaka, M.; Nakaya, T. Makromol. Chem. 1984, 185, 1915.
 (11) Kakinuma, K.; Imamura, N.; Ikekawa, N.; Tanaka, H.; Minami, S.; Omura, S. J. Am. Chem. Soc. 1980, 102, 7493.
 (12) Tamura, Y.; Wada, A.; Okuyama, S.; Fukumori, S.; Hayashi, Y.; Gohda, N.; Kita, Y. Chem. Pharm. Bull. 1981, 29, 1312.

[^3]: (13) (a) Dodd, J. H.; Starrett, J. E., Jr.; Weinreb, S. M. J. Am. Chem. Soc. 1984, 106, 1811. (b) Ramesh, S.; Franck, R. W. J. Chem. Soc., Chem. Commun. 1989, 960.
 (14) (a) Vinogradov, M. G.; Kovalev, I. P.; Nikishin, G. I. Izv. Akad. Nauk SSSR. Ser. Khim. 1984, 384; Bull. Acad. Sci. USSR, Ser. Chem. 1984, 342. (b) Vinogradov, M. G.; Dolinko, V. L.; Nikishin, G. I. Izv. Akad. Nauk SSSR. Ser. Khim. 1984, 2065; Bull. Acad. Sci. USSR, Ser. Chem. 1984, 1884.
 (15) Boland, W.; Jaenicke, L. Chem. Ber. 1978, 111, 3262.

[^4]: (17) Minisci, F.; Citterio, A. In Advances in Free-Radical Chemistry; Williams, G. H., Ed.; Heyden and Son: London, 1980; Vol. 6, pp 65-125.

[^5]: (18) MMX, obtained from Serena Software, 489 Serena Lane, Bloomington, IN 47401 was used on a VAX 8650 . Updated versions of MODEL obtained from Prof. Midland, University of California, Riverside, and Prof. Steliou, University of Montreal, were used for structure input and analysis. NMR coupling constants were calculated using mODEL on structures minimized with MMX.

[^6]: (19) Doerffel, V. K.; Kaspar, H.; Zimmerman, G. J. Prakt. Chem. 1974, 316, 645.
 (20) Abraham, R. J.; Loftus, P. Proton and Carbon-13 NMR Spectroscopy, John Wiley \& Sons: New York, 1985. Derome, A. E. Modern NMR Techniques for Chemistry and Research; Pergamon Press: Oxford and New York, 1987.

[^7]: (21) Giese, B. Angew. Chem., Int. Ed. Engl. 1983, 22, 753.
 (22) (a) Giese, B.; Horler, H.; Leising, M. Chem. Ber. 1986, 119, 444. (b) Riemenschneider, K.; Bartels, H. M.; Dornow, R.; Drechsel-Grau, E.; Eichel, W.; Luthe, H.; Matter, Y. M.; Michaelis, W.; Boldt, P. J. Org. Chem. 1987, 52, 205. (c) Baciocchi, E.; Giese, B.; Farshchi, H.; Ruzziconi, R. J. Org. Chem. 1990, 55, 5688. (d) Gleicher, G. J.; Mahiou, B.; Aretakis, A. J. J. Org. Chem. 1989, 54, 308.

[^8]: (23) Brower, H.; Stothers, J. B. Can. J. Chem. 1972, 50, 1361.
 (24) Goldberg, M. W.; Müller, P. Helv. Chim. Acta 1938, 21, 1702.
 (25) Kharasch, M. S.; Sternfeld, E.; Mayo, F. R. J. Am. Chem. Soc. 1937, 59, 2137.

